
Web-based AI System for Medical Image Segmentation

Hao Chen1
∗
, Taowen Liu1

∗
, Songyun Hu1, Leyang Yu1, Yiqi Li1, Sihan Tao1,

Jacqueline Lee1, and Ahmed E. Fetit1,2 (�)

1 Department of Computing, Imperial College London, UK
2 UKRI CDT in Artificial Intelligence for Healthcare, Imperial College London, UK

a.fetit@imperial.ac.uk

Abstract. Image segmentation is a crucial step in the diagnosis of brain tumours,
and machine learning has emerged as a promising tool for tumour characterisation
from medical imaging data. Despite their enormous potential in automatic segmenta-
tion of brain tumours from complex MRI scans, the implementation and use of ma-
chine learning algorithms can often present practical challenges to medical imaging
researchers. This paper introduces a web-based GUI application designed to integrate
all the components needed in deep learning workflows, allowing medical imaging re-
searchers to seamlessly train and infer on data stored on in-house servers or on local
machines. Our platform simplifies the process of training and inferring on MRI data
using state-of-the-art models, supports integration with XNAT servers, and incorpo-
rates powerful tools for visualizing inference results.

Keywords: Deep learning systems · Magnetic resonance imaging · Image segmentation ·
XNAT · Image informatics

1 Introduction

Magnetic Resonance Imaging (MRI) is a non-invasive technique that can be used to detect,
characterise, and monitor various diseases and conditions including brain tumours. Machine
learning (ML) techniques, including deep learning-based algorithms, have demonstrated
enormous potential in automatic segmentation of brain tumours from complex MRI scans.
However, the way modern ML workflows are implemented in research settings presents a
number of barriers to medical imaging researchers who may be novice to the computing
aspects of the work. First, GPU acceleration is normally needed to provide the necessary
compute power for training computationally intensive models, making GPU cards an in-
valuable component in most ML workflows. Furthermore, implementing the source code
of a network architecture, as well as configuring GPU cards on research labs and hospital
hardware may impede the adoption of powerful ML innovations by non-computer scientists.
Moreover, researchers interested in training and deploying ML models should ideally be able
to seamlessly use in-house servers and compute resources for getting access to the training
data as well as storing any processed data, introducing further challenges in terms of writing
data to and from the available servers.

To address these challenges, in this paper we introduce a web-based GUI application to
the medical imaging community, integrating all the components typically needed in deep
learning workflows into a single system. Our proposed web-based system allows users to

* Equal contributions.

2 Chen et al.

seamlessly train and infer on MRI data stored on in-house servers or local machines, without
the need for a programming background, using a variety of advanced ML models whose
architectures and training parameters can be easily configured in the GUI.

Our contributions are as follows: 1) we develop a web-based platform that enables med-
ical imaging researchers to configure, train, and evaluate segmentation models using MRI
data stored locally, 2) we incorporate ML segmentation models (e.g. HyperDenseNet3D [3],
ResNet3D [13], Gibbs ResUnet [2]) while ensuring that the model architectures and train-
ing hyper-parameters remain configurable by the user, and 3) we integrate the eXtensible
Neuroimaging Archive Toolkit (XNAT) [9] into our system, a popular medical image data
management system, to allow users to easily use data stored on XNAT servers and carry
out model training and/or inference.

Our web-based artificial intelligence (AI) system for medical image segmentation enables
the following capabilities: i) tracking training progress through TensorBoard3, ii) saving
trained models for later use or further fine-tuning, iii) visualising inferred results using
embedded third-party Neuroimaging Informatics Technology Initiative (NIfTI) [10] viewers,
iv) allowing users to also evaluate their trained models on a selected test dataset and view
the results in the provided evaluation history table, v) allowing users to log in to existing
XNAT accounts, download data and upload inferred results from/to XNAT servers, and vi)
evaluating on images from XNAT or uploaded locally. Whilst the main use-case discussed
throughout this paper is brain tumour segmentation from MRI scans, the system can be
easily adapted to support a variety of datasets and other anatomies or imaging modalities.

2 Related Work

Several frameworks have been developed that enable researchers to store, manage, and share
medical imaging data, e.g. Dicoogle [14], an open source Picture Archiving and Communi-
cations System (PACS) archive, the Open Health Imaging Foundation (OHIF) Viewer [17],
and the eXtensible Neuroimaging Archive Toolkit (XNAT) [9]. XNAT has been widely
adopted as an infrastructure backbone for the organisation, management, and distribution
of large imaging repositories [4]; examples include NeuroAI-HD [16], the Human Connec-
tome Project (HCP) [15], the Developing Human Connectome Project (dHCP) [8], and
the NITRC image repository [5]. Additionally, several projects have successfully interfaced
XNAT with programming languages and interoperability standards, e.g. RXNAT [4], PyX-
NAT [12], and FHIR on XNAT [6]. Whilst researchers should be able to directly use the
data held on available XNAT servers to carry out model training and/or inference, little
work was reported in the literature on providing no-code interfaces for incorporating deep
learning workflows with XNAT.

3 Designing a Web-based AI System for Medical Image
Segmentation

In this section, we discuss the system architecture of our proposed web-based platform for
medical image segmentation and the datasets used when deploying our system.

Web-based AI System for Medical Image Segmentation 3

Fig. 1: System architecture of our web-based system for medical image segmentation.

3.1 System Architecture

Figure 1 gives an overview of the system’s architecture. Our web-based platform can be
used to either load MRI data stored locally or using XNAT [9]. XNAT provides a variety
of tools for storing, organising, and exporting research imaging data and is widely used by
medical imaging researchers worldwide across research labs, hospitals, and universities. We
used FastAPI4 and React5 to implement the web interface that allows users to seamlessly
communicate with XNAT and to upload data. Crucially, we used HTTPS in both the back-
end and the front-end in order to ensure the safety of network traffic.

Regarding training and inference, we used PyTorch6, a popular open-source machine
learning library used for deep learning, for configuring, training deep learning models, and
ultimately using the trained models to infer on MRI images. The web-based system assumes
that a GPU-enabled server is available for the users to carry out image training and infer-
ence. However, if no GPU resources are available, our system automatically falls back to
available CPUs instead. The web server communicates with the GPU server using a combi-
nation of FastAPI HTTPS calls and WebSocket connections; FastAPI HTTPS calls are used
to transmit the training configuration, dataset, and model architecture, while WebSocket
connections are used to provide real-time updates on the training process.

Figure 2 illustrates the workflow for training and inferring on medical images. The system
uses data from XNAT or stored locally to create a dataset. With regards to data management
in the context of MRI image segmentation, a ‘dataset’ is a collection of 3D scans and
segmentation pairs used to train a model. To write a new dataset onto the system, the user
can either upload local NIfTI images and segmentation labels, or retrieve and download an
existing dataset from XNAT, which would require the XNAT Dataset Plugin. For XNAT
access, the login page of our application enables users to log into their XNAT account using
their access credentials, and identify the XNAT server they wish to use via a URL. This
functionality enables users to easily switch between different XNAT servers, and ensures
that they can only access data held on XNAT for which they have been granted permission.
Crucially, XNAT offers fine-grained control of authorization which our system inherits so
users could have great flexibility of authorization.

3 https://www.tensorflow.org/tensorboard
4 https://fastapi.tiangolo.com/
5 https://react.dev/
6 https://pytorch.org/

https://bitbucket.org/xnatx/datasets-plugin/src/master/
https://www.tensorflow.org/tensorboard
https://fastapi.tiangolo.com/
https://react.dev/
https://pytorch.org/

4 Chen et al.

Once a dataset is written onto the system, it will be stored in the application’s database
in a ML-friendly storage format and could be readily used for model training and evaluation.
The final step in the workflow is represented by the inference stage, where users can upload
images from XNAT or from their local machines, and then view and save results.

Fig. 2: Workflow for training and inferring on medical images.

To ensure that the application is robust and reliable, we employed static type checks and
unit tests during our continuous iteration/continuous development pipeline. Specifically, we
employed pytest for testing and mypy for performing static type checks; and we carried out
a variety of validation checks for inputs to our application, e.g. training hyper-parameters.

3.2 Datasets

Fig. 3: Tumour label overlaid over a 3D MRI scan; scan obtained from the MSD dataset [1].

Web-based AI System for Medical Image Segmentation 5

Our application provides users with the option to upload their own MRI data onto
XNAT, which can help adapt any developed models to the statistical distributions of a
specific hospital or research centre. In our system, we made use of the publicly available
brain tumour segmentation task data obtained from the Medical Segmentation Decathlon
(MSD) challenge [1]. The MSD is a benchmark dataset that was designed to evaluate the
performance of state-of-the-art segmentation algorithms. It consists of 10 different medical
imaging segmentation tasks, covering several anatomical structures, including the liver, pan-
creas, and brain tumours. Our system was deployed with the brain tumour segmentation
task data, which comprises two 3D NIfTI files for each data point, one for the MRI scan
and the other for the label. The NIfTI files in the dataset are 240x240x155 voxels, with a
voxel size of 1 mm3. The labeled data points include information about the location and
size of the brain tumour, as well as the surrounding brain tissues.

4 Training and Inference

In this section, we describe the key components regarding training and evaluation in our
system: model configuration, training configuration, and inference and evaluation, as well
as evaluate the usability of our system. Figure 4 shows the user view of the web application
for the training step.

Fig. 4: User interface of the web application for the training step.

4.1 Model Configuration

To create a new segmentation model, users can use our system’s model configuration page
and choose their preferred network architecture. Several architectures are currently avail-

6 Chen et al.

able, including a variety of models from the Medical Imaging Model Zoo [11] such as Hy-
perDenseNet3D [3], HRNet3D [7], and ResNet3D [13]; as well as Gibbs ResUNet [2]. All
models are pre-defined in PyTorch.

Fig. 5: User interface showing how a model can be configured.

Figure 5 shows a selection of the model types that can be selected and configured. Users
can also specify exact parameters before training, such as the number of channels, number of
layers, and whether to include a Gibbs Noise Layer in the case of Gibbs ResUnet. This level of
customization allows users to tailor the model’s architecture to suit the specific needs of their
dataset and experiment, potentially improving the overall performance of the segmentation
task. Once the user has chosen their desired model configuration, these settings are stored
in the system’s database for easy retrieval and management. This feature enables users to
revisit and modify their configurations, experiment with different settings, and compare
the performance of various model architectures and training parameters. By providing a
user-friendly interface for selecting and customizing pre-defined models in PyTorch, our
system aims to lower the barriers for medical professionals to access and apply advanced
ML techniques for brain tumour segmentation tasks.

4.2 Training Configuration

Model training can be initiated using the GUI via a training page (see Figure 6). Upon
selecting the training set, the user can either train a new model or fine-tune an existing
one. Hyperparameters can be specified in the advanced configuration section, including the
learning rate, batch size, number of epochs, optimizer, as well as loss function. Users can
then set the interval at which training logs are saved, and the split ratio determines the
proportion of the training set and validation set. After the configuration step is complete,
the training process can begin, and relevant metrics and the training status will be displayed
in the ‘training log’ table. Moreover, our application has an integrated TensorBoard display
which helps visualize training progress and results. A detailed training page will then be

Web-based AI System for Medical Image Segmentation 7

Fig. 6: User interface of the training page.

available for each training session created, plotting the computed training accuracy and loss
in real-time.

The dataset is stored in server in the supported NIfTI format. Upon training, the dataset
is firstly preprocessed, which involves cropping, normalization, and other necessary adjust-
ments to ensure consistency. The preprocessed data is then converted into PyTorch tensors,
which are compatible with the machine learning library. The network architecture is pre-
stored in the dataset and is automatically loaded during the training process.

Once the GPU server receives the necessary information, it begins the training process,
periodically sending updates to the web server with the latest training metrics, such as
loss and accuracy. The web server then updates the training log table and the integrated
TensorBoard display in real-time, allowing users to monitor the progress of the ongoing
training session. This implementation design ensures seamless communication between the
user interface, web server, and GPU server, enabling users to focus on configuring and
monitoring the training process without worrying about the underlying complexities.

4.3 Inference and Evaluation

Our application enables users to evaluate their trained models on a selected test set, pro-
viding valuable insights into the model’s performance. The Intersection over Union (IoU)
metric is displayed and automatically updated as the evaluation progresses, offering users
a clear understanding of the model’s segmentation accuracy. Once a user has finalized the
training process, they can employ the trained model to infer the brain tumour segmentation

8 Chen et al.

Fig. 7: User interface of the inference page, including the third-party brain viewer.

of an MRI image. The user has the option to choose between using images from XNAT
or uploading local images for inference, and all the data can either be downloaded to the
local machine or uploaded to the XNAT server as needed, providing ample flexibility in data
management.

Furthermore, our application incorporates two third-party viewers, SOCR Brain Viewer7

and Papaya8, that allow users to rapidly inspect and visualize the segmentation output.
These image viewers provide various visualization options, allowing users to assess the qual-
ity of the segmentation and identify potential areas for improvement. Figure 7 shows the
user view of the inference page, including the brain viewer.

4.4 Evaluating Usability

To evaluate the usability of our system, we asked five users with extensive ML background
to use our application, and assigned them tasks focused on model training, evaluation and
inference. With an average of 2.2 questions asked per user, each task took an average of
341 seconds to complete. We also asked the users to estimate the amount of time they
would take to perform the same process with Python code, based on their prior experience.
This amounted to 35 minutes on average, suggesting that our application can substantially
improve the efficiency of modern ML workflows (see Figure 8).

5 Conclusion and Future Work

In this paper, we presented an efficient web-based platform that integrates ML models with
medical imaging tools through a user-friendly and intuitive interface which does not require

7 https://socr.umich.edu/HTML5/BrainViewer/
8 https://www.fmrib.ox.ac.uk/ukbiobank/group means/index.html

https://socr.umich.edu/HTML5/BrainViewer/
https://www.fmrib.ox.ac.uk/ukbiobank/group_means/index.html

Web-based AI System for Medical Image Segmentation 9

tim
e/

m
in

ut
es

0

10

20

30

40

inference session evaluation session

using our website writing Python code(speculated)

Time taken to start a session

Fig. 8: Time taken to start an inference/evaluation session

any programming experience. The application greatly simplifies the process of training and
inferring MRI data for brain tumour segmentation research, empowering users to inter-
act with the system by integrating all the components typically needed in deep learning
workflows. The platform also supports uploading and downloading data to/from to XNAT
servers, tracking training progress through TensorBoard, and viewing inferred results using
embedded third-party NIfTI viewers.

Our web-based AI system surpasses the individual components it integrates by care-
fully handling edge cases and validating all inputs before training, evaluation, and inference
sessions, thus simplifying the user process for debugging ML algorithms. There are several
avenues for future work; first, we aim to provide flexibility for users to be able to define,
implement, and upload their own PyTorch model. Moreover, we plan to extend our system
to incorporate other datasets and other anatomies or imaging modalities. Finally, for a more
secure approach to handling sensitive medical data, implementing federated learning with
XNAT servers represents a promising direction of future work.

6 Acknowledgments

The research of Dr Ahmed E. Fetit was supported by the UKRI CDT in Artificial Intelligence
for Healthcare in his role as Senior Teaching Fellow (grant number EP/S023283/1). For the
purpose of open access, the author has applied a Creative Commons Attribution (CC BY)
licence to any Author Accepted Manuscript version arising.

References

1. Antonelli, M., Reinke, A., Bakas, S., Farahani, K., Kopp-Schneider, A., Landman, B.A., Litjens,
G., Menze, B., Ronneberger, O., Summers, R.M., et al.: The medical segmentation decathlon.
Nature Communications 13(1), 4128 (2022)

2. Cabrera, Y., Fetit, A.E.: Reducing CNN textural bias with k-space artifacts improves robust-
ness. IEEE Access 10 (2022)

10 Chen et al.

3. Dolz, J., Gopinath, K., Yuan, J., Lombaert, H., Desrosiers, C., Ben Ayed, I.: Hyperdense-net:
a hyper-densely connected CNN for multi-modal image segmentation. IEEE Transactions on
Medical Imaging 38(5) (May 2019)

4. Gherman, A., Muschelli, J., Caffo, B., Crainiceanu, C.: Rxnat: An open-source R package for
XNAT-based repositories. Frontiers in Neuroinformatics 14, 572068 (2020)

5. Kennedy, D.N., Haselgrove, C., Riehl, J., Preuss, N., Buccigrossi, R.: The NITRC image repos-
itory. NeuroImage 124, 1069–1073 (2016)

6. Khvastova, M., Witt, M., Essenwanger, A., Sass, J., Thun, S., Krefting, D.: Towards interoper-
ability in clinical research-enabling fhir on the open-source research platform XNAT. Journal
of Medical Systems 44, 1–5 (2020)

7. Li, S., Ke, L., Pratama, K., Tai, Y.W., Tang, C.K., Cheng, K.T.: Cascaded deep monocular
3D human pose estimation with evolutionary training data. In: 2020 IEEE/CVF CVPR (Jun
2020)

8. Makropoulos, A., Robinson, E.C., Schuh, A., Wright, R., Fitzgibbon, S., Bozek, J., Counsell,
S.J., Steinweg, J., Vecchiato, K., Passerat-Palmbach, J., et al.: The developing human con-
nectome project: A minimal processing pipeline for neonatal cortical surface reconstruction.
Neuroimage 173, 88–112 (2018)

9. Marcus, D.S., Olsen, T.R., Ramaratnam, M., Buckner, R.L.: The extensible neuroimaging
archive toolkit: An informatics platform for managing, exploring, and sharing neuroimaging
data. Neuroinformatics 5(1) (Mar 2007)

10. Moore, C.M.: Nifti (File format) | radiology reference article | radiopaedia.org
11. Nikolaos, A.M.: Deep learning in medical image analysis : a comparative analysis of multi-modal

brain-MRI segmentation with 3D deep neural networks (Jul 2019)
12. Schwartz, Y., Barbot, A., Thyreau, B., Frouin, V., Varoquaux, G., Siram, A., Marcus, D.S.,

Poline, J.B.: PyXNAT: XNAT in python. Frontiers in Neuroinformatics 6, 12 (2012)
13. Tran, D., Wang, H., Torresani, L., Ray, J., LeCun, Y., Paluri, M.: A closer look at spatiotem-

poral convolutions for action recognition (2017)
14. Valente, F., Silva, L.A.B., Godinho, T.M., Costa, C.: Anatomy of an extensible open source

pacs. Journal of Digital Imaging 29, 284–296 (2016)
15. Van Essen, D.C., Smith, S.M., Barch, D.M., Behrens, T.E., Yacoub, E., Ugurbil, K., Consor-

tium, W.M.H., et al.: The WU-Minn human connectome project: an overview. Neuroimage 80,
62–79 (2013)

16. Vollmuth, P., Foltyn, M., Huang, R.Y., Galldiks, N., Petersen, J., Isensee, F., van den Bent,
M.J., Barkhof, F., Park, J.E., Park, Y.W., et al.: Artificial intelligence (AI)-based decision sup-
port improves reproducibility of tumor response assessment in neuro-oncology: An international
multi-reader study. Neuro-Oncology 25(3), 533–543 (2023)

17. Ziegler, E., Urban, T., Brown, D., Petts, J., Pieper, S.D., Lewis, R., Hafey, C., Harris, G.J.: Open
health imaging foundation viewer: an extensible open-source framework for building web-based
imaging applications to support cancer research. JCO Clinical Cancer Informatics 4, 336–345
(2020)

	Web-based AI System for Medical Image Segmentation

