
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL. XX, NO. X, SEPTEMBER 20XX 1

Enhancing Dropout-based Bayesian Neural Networks
with Multi-Exit on FPGA

Hao (Mark) Chen, Liam Castelli, Martin Ferianc, Hongyu Zhou, Shuanglong Liu,
Wayne Luk, Fellow, IEEE, Hongxiang Fan

Abstract—Reliable uncertainty estimation plays a crucial role
in various safety-critical applications such as medical diagnosis
and autonomous driving. In recent years, Bayesian neural net-
works (BayesNNs) have gained substantial research and indus-
trial interests due to their capability to make accurate predictions
with reliable uncertainty estimation. However, the algorithmic
complexity and the resulting hardware performance of BayesNNs
hinder their adoption in real-life applications. To bridge this gap,
this paper proposes an algorithm and hardware co-design frame-
work that can generate field-programmable gate array (FPGA)-
based accelerators for efficient BayesNNs. At the algorithm
level, we propose novel multi-exit dropout-based BayesNNs with
reduced computational and memory overheads while achieving
high accuracy and quality of uncertainty estimation. At the hard-
ware level, this paper introduces a transformation framework
that can generate FPGA-based accelerators for the proposed ef-
ficient multi-exit BayesNNs. Several optimization techniques such
as the mix of spatial and temporal mappings are introduced to
reduce resource consumption and improve the overall hardware
performance. Comprehensive experiments demonstrate that our
approach can achieve higher energy efficiency compared to CPU,
GPU, and other state-of-the-art hardware implementations. To
support the future development of this research, we have open-
sourced our code at: https://github.com/os-hxfan/MCME FPG
A Acc.git

Index Terms—Bayesian Neural Networks, Deep Ensembles,
Multi-Exit Optimization, Uncertainty Prediction, Field Pro-
grammable Gate Array (FPGA)

I. INTRODUCTION

Deep neural networks (DNNs) have emerged as a cutting-
edge frontier of artificial intelligence, with extensive applica-
tions in various domains ranging from computer vision [1]
to natural language processing [2]. However, conventional
DNNs are suffering from critical limitations: they operate akin
to black boxes, rendering them incapable of (a) explaining
their decisions and (b) estimating their uncertainty reliably
when making predictions [3]. The lack of reliable uncertainty
estimation undermines the trustworthiness of conventional
DNNs, making them unsuitable candidates for safety-critical

This work was supported in part by the United Kingdom EPSRC un-
der Grant EP/L016796/1, Grant EP/N031768/1, Grant EP/P010040/1, Grant
EP/V028251/1 and Grant EP/S030069/1, Maxeler, Intel, Xilinx and SGIIT.

H. Chen, L. Castelli, Z. Zhang and W. Luk are with the Department of
Computing, Imperial College London, London, SW7 2AZ, UK.

M. Ferianc is with the Department of Electronic and Electrical Engineering,
University College London, London, WC1E 6BT, UK.

S. Liu is with the School of Physics and Electronics, Hunan Normal
University, Changsha 410081, China.

H. Fan is with Samsung AI Center, Cambridge, CB1 2JH, UK. He is
also affiliated with the Department of Computer Science and Technology,
University of Cambridge, CB3 0FD, UK.

∗ Corresponding author: Hongxiang Fan (h.fan17@imperial.ac.uk).

applications [4], [5], [6] where reliable confidence and uncer-
tainty measures are imperative, in addition to high accuracy.

Bayesian neural networks (BayesNNs) [7] leverage
Bayesian inference to model the epistemic uncertainty, in
addition to the default predictive uncertainty, which addresses
the limitation of conventional DNNs in estimating uncertainty.
By representing the weights as probabilistic distributions,
BayesNNs provide a principled approach to quantifying their
uncertainty, enhancing the robustness and trustworthiness of
their predictions in comparison to standard DNNs. Neverthe-
less, the benefits of BayesNNs also come with costs: the high
dimensionality of modern BayesNNs introduces prohibitively
expensive computation and memory overheads, making the
exact Bayesian inference intractable [8].

Although various approximation approaches, such as Bayes-
by-backprop [9] and Monte-Carlo Dropout (MCD) [8], have
been introduced to reduce the algorithmic and hardware com-
plexities of BayesNNs, there are still two challenges while
deploying BayesNNs in real-world scenarios. First, BayesNNs
generally perform worse than traditional deep ensembles [10]
with respect to both accuracy and uncertainty estimation [11].
Second, even with the algorithmic approximations, the com-
putational and memory demands of BayesNNs are still much
higher than standard DNNs due to Monte-Carlo (MC) sam-
pling, hindering their deployment in demanding applications,
especially those with real-time requirements. While there is ex-
tensive research on hardware acceleration for deep learning al-
gorithms, most existing efforts focus on domain-specific hard-
ware [12], [13], [14] or design automation tools [15], [16] for
standard DNNs such as convolutional DNNs (CNNs) [17], [18]
and long short-term memory (LSTM) recurrent DNNs [19].
Hence there are urgent needs for hardware acceleration and
algorithmic performance improvements for BayesNNs.

To reduce the algorithmic and hardware barriers of deploy-
ing BayesNNs in real-world applications, this paper proposes
an algorithm and hardware co-design framework to improve
the algorithm and hardware performance of BayesNNs. At
the algorithm level, we propose a novel multi-exit dropout-
based BayesNN that attains low computational and mem-
ory overheads while achieving better uncertainty estimation
than traditional deep ensembles. Furthemore we introduce
the hardware support to Masksemble [20]-based DNNs and
we extend them to multi-exit architectures proposed in this
work. Masksemble is an efficient variant of dropout-based
BayesNN without the need for runtime sampling. Both ap-
proaches fall under the category of dropout-based BayesNNs,
each demonstrating unique trade-offs between algorithmic and
hardware performance. At the hardware level, we choose

https://github.com/os-hxfan/MCME_FPGA_Acc.git
https://github.com/os-hxfan/MCME_FPGA_Acc.git

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL. XX, NO. X, SEPTEMBER 20XX 2

Phase 1:
Multi-Exit Dropout

Enhancement

MCD/Masksemble Layer
(HLS Implementation)

Phase 3:
Algorithm&
Hardware

Co-Exploration

Phase 4:
Generation of HLS-based

BayesNN Accelerator

FPGA-based
Accelerator

Phase 2:
Spatial

& Temporal
Mapping

Neural
Architecture

Software Level Hardware Level

Fig. 1. Overview of our four-phase transformation framework.

field-programmable gate array (FPGA) technology due to its
superior flexibility over application-specific integrated circuit
(ASIC) and its potential for achieving higher energy efficiency
over graphics processing units (GPUs) [21]. As shown in
Figure 1, we propose a transformation framework to gener-
ate high-performance FPGA-based accelerators of multi-exit
dropout-based BayesNNs for accurate and efficient uncertainty
estimation. With several novel optimizations such as spatial-
temporal mapping and algorithm-hardware co-exploration, the
generated accelerators achieve higher energy efficiency than
previous hardware implementations. To facilitate public access
to our implementation, we open-source our code at https:
//github.com/os-hxfan/MCME FPGA Acc.git.

The contributions of this paper can be summarized as
follows:
• Novel multi-exit dropout-based Bayesian neural network

(BayesNN) approaches that achieve high quality of uncer-
tainty estimation and high accuracy with low compute and
memory overheads (Section III).

• A transformation framework and optimization strategies
including partial dropout, spatial-temporal mapping and
algorithm-hardware co-exploration for enhancing algorithm
and hardware performance (Section IV).

• A comprehensive evaluation of the proposed approach based
on multiple models and datasets, demonstrating the effec-
tiveness of our co-design approach (Section V).
This work extends our conference publication [3]. The

extended material includes: 1) multi-exit support on Masksem-
bles to improve their algorithmic performance; 2) FPGA-
based acceleration of multi-exit Masksemble with optimized
implementation to improve hardware performance; 3) a more
comprehensive evaluation on the quality of uncertainty esti-
mation across multiple models and datasets.

II. BACKGROUND AND RELATED WORK

A. Bayesian Neural Networks

In comparison to DNNs, BayesNNs demonstrate the capa-
bility to effectively (a) mitigate overfitting and (b) estimate
epistemic uncertainty through the utilization of Bayesian in-
ference [7]. In contrast to non-BayesNNs, BayesNNs infer a
distribution over their weights through the Bayes rule instead
of point-wise weights estimates as encountered in standard
DNNs [7]. Despite their advantages, the current BayesNNs [8]
have limited utility in real-world settings because of their high
dimensionality which renders the analytical calculation of the
aggregated weight distribution computationally infeasible.

There are two main approaches aiming to approximate
the intractable Bayesian inference required by BayesNNs:
Markov Chain Monte Carlo (MCMC) and variational inference
(VI) [22]. MCMC-based methods directly sample from exact
posterior distributions, and representative algorithms include
Hamiltonian Monte Carlo (HMC) [23] and stochastic gradi-
ent Langevin Dynamic (SGLD) [24] approaches. Instead of
sampling from the exact posterior, VI-based approaches [8],
[9] adopt approximate variational distributions with a set of
variational parameters. During training, the variational param-
eters are optimized to ensure that their values are as close as
possible to the exact posterior weight distribution.

B. Dropout-based Approximations for BayesNNs

1) MCD-based BayesNNs: Monte-Carlo dropout
(MCD) [8] can be categorized as one of the VI-based
approaches that adopt dropout [25] masks to perform efficient
Bayesian inference [22]. MCD implements a random filter-
wise binary mask to remove connections between layers of a
DNN. The mask values follow a Bernoulli distribution, where
the binary random variables take on the value of 0 with a
drop rate p. It has been proven that MCD could be interpreted
mathematically as approximate Bayesian inference for deep
Gaussian processes [8].

A key distinction between dropout traditionally employed
in standard DNNs [25] and MCD [8] is that MCD applies
dropout during both training and evaluation. During evalua-
tion, MCD-based BayesNNs execute multiple forward passes
with dropout on and the results are obtained by averaging
the output of the multiple MC samples. Each forward pass
uses an independently generated set of masks, allowing for
quantification of the model uncertainty, ultimately enhancing
the predictive uncertainty and accuracy.

2) Masksembles: By leveraging the predictive power of
multiple independent DNNs, deep ensembles [10] can sig-
nificantly improve accuracy and the quality of uncertainty
estimation [10], while achieving higher robustness against
dataset shift [11]. However, deep ensembles require the prac-
titioner to train and maintain multiple DNNs in parallel which
significantly increases the computational and memory costs
during both training and evaluation.

Inspired by MCD-based BayesNNs, Masksembles [20] train
a multi-member deep ensemble inside a single net by using
sets of pre-defined dropout masks, effectively reducing the
computational and memory overheads in comparison to naive
deep ensembles. Besides, there are another two advantages
of Masksembles when compared to MCD-based BayesNNs.

https://github.com/os-hxfan/MCME_FPGA_Acc.git
https://github.com/os-hxfan/MCME_FPGA_Acc.git

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL. XX, NO. X, SEPTEMBER 20XX 3

First, since the dropout masks are determined before training
and inference, Masksembles eliminate the need for runtime
sampling, which effectively reduces the hardware cost. Sec-
ond, the overlap and correlation among different dropout
masks in Masksembles can be strictly controlled, allowing it to
achieve algorithmic performance similar to that of traditional
deep ensembles.

C. Multi-Exit DNNs

Conventional deep learning architectures typically employ
a single exit per network to generate predictions. However, a
single-exit architecture exhibits two drawbacks when process-
ing inputs that necessitate only intermediate features extracted
from the middle layers. First, unnecessary computation and
memory costs incur as single-exit DNNs always process all
the layers until the output layer even when the intermediate
features are informative enough for predictions. Second, cer-
tain key features extracted from the intermediate layers might
get lost as the network goes deeper, resulting in inaccurate
prediction. To avoid these issues, multi-exit [26] DNNs are
introduced that make predictions at various depths of a DNN
in a single forward pass to improve both the algorithm and
hardware performance.

While some architectures are specially designed to support
additional early-exits like Multi-Scale DenseNet [27], best
performance is usually obtained through attaching multiple
classifiers to high-performance networks like ResNet [27].
Common choices for where to attach the early exits are after
a specific number of floating-point operations (FLOPs) or
groupings of convolutional layers [28], [29]. In this paper, we
adopt the multi-exit enhancement as an approach to improve
the accuracy, uncertainty estimation quality and compute effi-
ciency of BayesNNs.

D. Related Work

Extensive research has been conducted on DNNs and the use
of FPGAs to accelerate them for various applications [1], [30].
Representative work includes energy-efficient CNN accelera-
tion [13] and FPGA-based real-time AI cloud services [12].
Significant research also targets design automation for DNNs,
like the open source tool hls4ml supporting an automatic
design flow involving high-level synthesis to promote low-
power machine learning [16].

FPGA-based acceleration of BayesNNs has emerged re-
cently [31]. Early designs include Bynqnet, an FPGA-based
BayesNNs with quadratic activations for sampling-free uncer-
tainty estimation [32]. Efficient FPGA implementations for 2D
and 3D convolutional BayesNNs have been proposed [33]. For
recurrent Bayesian DNNs, [34] proposed an FPGA accelerator
as well as an algorithmic co-design framework. Another work
is VIBNN, an FPGA-based accelerator that supports Gaussian
distribution-based BaynesNNs sampled at runtime [35]. Ad-
ditionally, [36] proposed algorithmic and hardware optimiza-
tions for BayesNNs, exploiting their structured sparsity and
redundant computations. Lastly, [37] explored quantisation in
BayesNNs enabling their efficient execution on FPGAs using
integer arithmetic.

In contrast to these approaches, this work extends and
differs from the related work in several ways. First, it
proposes a novel multi-exit dropout-based Bayesian DNN,
which effectively decreases the computational and memory
overhead while achieving high-quality uncertainty estimation
and accuracy. Second, it introduces an automatic tool which
translates a software description of the multi-exit BayesNN
into a hardware design, executable on an FPGA. Third, it
introduces several optimization techniques to reduce overall
resource consumption and improve the hardware performance
of multi-exit BayesNNs without harming their algorithmic
performance. These contributions are generalisable to different
datasets and DNN architectures, as shown in the experiments,
and extensible to previous work mainly through the addition of
sampling-based early exits and their hardware consideration.

III. MULTI-EXIT DROPOUT-BASED BAYESNNS

A. Multi-Exit Enhancement

As mentioned in Section II-B, while both MCD-based
BayesNNs and Masksembles demonstrate the potential for
efficient predictions and uncertainty estimation, they still suffer
from limitations. On the one hand, MCD-based approximation
methods have been criticised due to their inferior performance
in uncertainty estimation and confidence calibration when
compared to deep ensembles [11], [10]. It has been empirically
shown that the introduction of MCD layers after activations
in vanilla MCD-based BayesNNs can hamper their predictive
power, worsening both their accuracy and uncertainty quan-
tification capabilities [38]. On the other hand, dropout-based
BayesNNs impose a heavy computational burden since obtain-
ing each a prediction necessitates running the entire network
multiple times with respect to different dropout masks. This
compute inefficiency hinders their widespread adoption for
efficient uncertainty estimation. To address these drawbacks,
this paper proposes a novel multi-exit enhancement for both
dropout-based BayesNNs spanning MCD and Masksembles
generated masks. By adopting this approach, we aim to achieve
effective and efficient uncertainty estimation, mitigating the
limitations of both methods.

In
pu

t

M
C

Ex
it

(a) Single-exit BayesNN (b) Multi-exit non-BayesNN (c) Multi-exit BayesNN

Conv
Layer

MCD
Layer

In
pu

t

Ex
it-

0
Ex

it-
1

In
pu

t

M
C

Ex
it-

0
M

C
Ex

it-
1

Fig. 2. Difference between a single-exit BayesNN, a multi-exit NN and a
multi-ext BayesNN.

1) Multi-Exit MCD-based BayesNNs: Figure 2 presents
the network architectures of three distinct approaches: a
vanilla MCD-based BayesNN, a multi-exit non-BayesNN, and
a multi-exit MCD-based BayesNN proposed in this work.
By adding multiple exits to vanilla MCD-based BayesNNs,
we propose multi-exit MCD-based BayesNNs, as depicted
in Figure 2(c). In contrast to the traditional single-exit MCD-
based BayesNNs, our multi-exit MCD-based approach makes

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL. XX, NO. X, SEPTEMBER 20XX 4

predictions from exits at different depths of the network, which
effectively improves the quality of uncertainty estimation as
well as hardware efficiency, as demonstrated in Section V-C.
Furthermore, when compared to multi-exit non-BayesNNs, our
proposed approach has the advantage of generating arbitrary
prediction MC samples with the use of MCD layers, improving
the flexibility for uncertainty estimation. An intriguing aspect
of multi-exit MCD-based BayesNNs lies in the capability of
capturing the uncertainty across different network depths. This
stems from the utilization of diverse intermediate features
extracted from different stages of the network to enable the
network to make diverse predictions.

2) Multi-Exit Masksembles: Although the use of MCD
layers enables flexibility in making arbitrarily many pre-
dictions, it also introduces hardware overhead due to the
frequent Bernoulli sampling to generate the masks. To pro-
vide a hardware-efficient alternative, we propose multi-exit
Masksembles to replace MCD layers with Masksemble layers.
To avoid the highly correlated predictive results across multi-
ple exits, we adopt the mask scale parameter [20] to control
the overlap among different pre-defined masks. There are
two distinct computational differences when comparing MCD-
based and Masksemble-based approaches. First, by adopting
pre-defined binary masks, multi-exit Masksembles eliminate
the need for sampling during runtime. As the locations of zeros
are fixed, it provides us with the opportunity for designing
efficient hardware accelerators to intelligently skip redundant
computation associated with zero values, as discussed in Sec-
tion IV-E. Second, MCD-based method applies dropout in the
channel granularity, while Masksemble layer adopts point-wise
masks with more fine-grained dropout granularity. These two
difference lead to distinct hardware design requirements while
accelerating multi-exit MCD-based BayesNNs and multi-exit
Masksembles.

This paper treats both MCD layers and Masksembles layers
as two distinct dropout layers, each exhibiting specific trade-
offs among accuracy, uncertainty and hardware performance.
To fulfil the diverse needs of different users,we propose a co-
design framework dedicated to optimizing the dropout layers,
as elaborated in Section IV. This optimization enables users to
tailor the final network for their target applications, ultimately
leading to efficient prrediction and uncertainty estimation for
various scenarios.

B. Partial Dropout

Applying dropout after every convolution incurs large com-
putational overhead since it requires running the whole net-
work multiple times to get the predictions. Inspired by [39],
[40], [3], we propose partial dropout for both multi-exit
Masksembles and multi-exit MCD-based BayesNNs. Rather
than applying dropout to every learnable layer [8], we insert
dropout layers starting from exits towards the input part of the
network. We refer to the layers without dropout applied as the
non-Bayesian component of the network. By placing dropout
layers closer to each exit, fewer computations are required
since the non-Bayesian results can be cached and reused for
different prediction samples.

With partial dropout applied, both multi-exit MCD-based
BayesNN and multi-exit Masksembles can be interpreted as
ensembles of approximated BayesNNs built upon the non-
Bayesian component feature extractor. Given an M -exit archi-
tecture with inputs X, our approach first maps the data from
input space into feature space by using fi(X), where fi(.) de-
notes the feature extractor of each exit with 1 ≤ i ≤ M . Built
upon the features extracted by fi(X), each exit then adopts
the dropout-based Bayesian approach through either MCD
or Masksembles layer to make predictions. The final result
ensembles predictions from different approximated BayesNNs
with multiple exits.

C. Compute Efficiency

We demonstrate that our proposed multi-exit dropout-based
BayesNNs have higher compute efficiency over single-exit
BayesNNs in making predictions. Given that the FLOPs
of the non-Bayesian feature extractor and all the exits are
FLOPmain and FLOPexit respectively. To get a single MC
sample, it is necessary to run the entire BayesNN end-to-end
and the computational cost of running Nsample MC samples
can be formulated as:

Nsample × (FLOPmain + FLOPexit). (1)

In contrast, the required FLOPs of an Nexit multi-exit dropout-
based BayesNN to get the same number of predictions is:

FLOPmain +
Nsample

Nexit
× FLOPexit. (2)

The reduction rate is given by dividing Equation 1 by Equa-
tion 2,

1 + α
1

Nsample
+ α

Nexit

, (3)

where α = FLOPexit

FLOPmain
. The reduction rate varies by different

multi-exit architectures, depending on Nsample, Nexit and α.
Section II-C discusses the wide variety of possible methods

in which multi-exit networks can be created and trained. In this
work, the exit branches are placed according to the approach
used in [28]. Semantic groupings are formed for each network,
splitting the network architecture into “blocks” separated by
pooling layers. An exit branch is then placed after each of
these blocks. In order to allow for more direct validation of
the work performed in this paper, the bidirectional distillation
training method [28] is used.

IV. TRANSFORMATION FRAMEWORK

A. Framework Overview

This section describes the proposed transformational frame-
work presented in Figure 1. It comprises multiple steps: (1)
adaptation of the architecture and evaluation protocol for
multi-exit dropout, (2) spatial and temporal mapping opti-
mization, (3) algorithm and hardware co-exploration and (4)
generation of FPGA-based accelerators for BayesNNs using
High-Level Synthesis (HLS).

Given a neural architecture description as an input, the
first phase applies early-exits enhanced either with MCD [8]

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL. XX, NO. X, SEPTEMBER 20XX 5

or Masksembles [20] approaches, and decides the number
of MC samples according to the user-specified requirements.
The second phase exploits spatial and temporal processing
in BayesNNs and implements optimisations to improve the
runtime hardware performance. The third phase involves al-
gorithm and hardware co-exploration to optimize design pa-
rameters such as bitwidth and execution strategies depending
on both the network architecture as well as the available
hardware resources in terms of DSPs or memory budget. Given
the network architecture as well as the obtained hardware
parameters, the last phase produces the final HLS-based hard-
ware implementation executable on an FPGA. We adopt the
design flow and HLS template of common NN layers from
hls4ml [16] and we develop an HLS-based implementation of
MCD/Masksembles layers and Keras-to-HLS conversion into
the design flow in order to generate the executable hardware
implementation.

B. Multi-Exit Dropout: Phase 1

Multi-exit dropout phase optimizes the design parameters
for multi-exit dropout-based BayesNNs, including: the number
of exits Nexit, the number of forward passes Npass, the type of
dropout layers and the associated dropout parameters, and the
total number of MC samples Nsample. The parameters trade-
off software and hardware performance, namely accuracy,
calibration and latency. For instance, the total number of MC
samples Nsample from a multi-exit dropout BayesNN with
Nexit exits and Npass passes is calculated as Nsample =
Npass×Nexit. Higher values of Nexit and Npass can improve
accuracy and calibration but also increase the total Nsample

count. This leads to worse hardware performance because
more forward passes through the network or the exits are
needed, increasing computational and memory demands. To
optimize these hyperparameters for different applications and
architectures, balancing both algorithm and hardware metrics,
we propose a multi-exit dropout optimization flow as shown
in Figure 3.

The multi-exit dropout optimization starts by constructing
different dropout-based BayesNNs based on the default input
architecture provided by the user. By inserting Nexit exits
with either MCD or Masksembles layers, different BayesNNs
candidates are constructed and trained on the target dataset.
After training, we evaluate each model with respect to software
and hardware metrics like accuracy, calibration, and FLOPs.
Models that do not meet specified constraints on these metrics,
given by the users, are filtered out. Then, according to the opti-
mization metric priority, design space exploration is performed
to find the optimal design configuration via grid search. The
priority can be set with respect to a single or multiple metrics,
specified by the user e.g. accuracy, calibration and the number
of FLOPs. The final optimized design is fed into the next stage
for hardware design generation.

C. Spatial and Temporal Mappings: Phase 2

Bayesian components with either MCD or Masksemble
layers require multiple forward passes to generate MC samples
from the predictive distribution. Compared with conventional

Model
Architecture

Construct multi-exit BayesNNs
with different:

1. Numbers of exits 𝑁!"#$
2. Type of Masking layer

3. Number of forward pass 𝑁%&''

Train different BayesNNs
on the target dataset

Evaluate accuracy,
calibration and FLOPs

User
Constraints

Opt
Priority

Filter out design points
that failed to meet

constraints

Design space exploration
via grid search

Done
(Optimized Config)

Start

Fig. 3. Optimization flow.

non-Bayesian NNs, the Bayesian components exhibit concur-
rency along the MC sampling dimension. This creates new
opportunities for parallelism compared to non-Bayesian net-
works. Therefore, we propose two mapping hardware optimi-
sation strategies, spatial and temporal, to accelerate Bayesian
NNs, which are illustrated in Figure 4.

Clone

Cached Tensor

MC
Sample 1

Cached Tensor

Cl
on

e MC
Sample 2

MC
Sample 3

(a) Spatial Mapping of Bayesian Components (b) Temporal Mapping of Bayesian Components

MC Engine 1

MC Engine 2

MC Engine 3

MC Engine

Concatenation

Map

Map

Map

Map

MC
Sample 1
(Cycle 1)

MC
Sample 2
(Cycle 2)

MC
Sample 3
(Cycle 3)

Fig. 4. Spatial and temporal mappings for Bayesian components.

In both mapping strategies, the data generated from the
last non-Bayesian layer are cached and cloned. As shown
in Figure 4(a), spatial mapping uses separate MC engines for
each sample. Although spatial mapping effectively reduces
latency by enabling parallel sampling, it also significantly
increases computational resource usage when the number of
MC samples becomes high. To alleviate this issue, we propose
temporal mapping that shares one MC Engine among multiple
MC samples. As shown in Figure 4(b), the cloned copies of the
cached data are concatenated before feeding it into the shared
engine. The engine then maps the computation of different MC
samples one by one onto a single MC Engine. Our approach
optimizes the mix of spatial and temporal mappings to meet
different latency and resource constraints.

D. Algorithm and Hardware Co-Exploration: Phase 3

Our hardware accelerator has various design parameters,
such as the implementation strategy used in hls4ml, layer reuse
factors and Bayesian mapping approaches. On the algorithm
side, given an input model architecture, we can optimize
hyperparameters like the number of channels for different
layers and bitwidths for activations/weights. We co-explore
both algorithm and hardware parameters using grid search
to optimize the design with similar algorithm accuracy to

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL. XX, NO. X, SEPTEMBER 20XX 6

defaults. To reduce search costs, we experiment with heuristics
such that the bitwidth for activations or weights is chosen from
{4, 6, 8, 16} bits and the channels selected from {C, C

2 ,
C
4 ,

C
8 }

with C being the original number of channels. Users can
also define other dimensions for the search space. This joint
optimization allows customizing algorithmic and hardware
configurations for different constraints.

E. Generation of FPGA-based Accelerator: Phase 4
We generate HLS-based accelerators using hls4ml design

and our custom templates for MCD/Masksembles layers. The
accelerators are synthesized and implemented in Vivado HLS
to produce FPGA bitstreams for deployment. The pseudocode
of HLS-based implementation of MCD and Masksemble lay-
ers are presented in Algorithm 1 and 2, respectively. We
apply optimizations like pipelining and caching, as described
in the previous Section, to improve performance. In both
implementations, the HLS directive HLS PIPELINE is used to
improve the overall performance through pipelining. We cache
the temporary result in the variable temp, before generating
the final outputs. The hardware receives layer inputs and
streams outputs to the next layer. For MCD, the dropout rate
Pdropout is a specified parameter by the user at the beginning
of running each model. A multiplexer selects between zero or
the input scaled by the rate based on comparing to a random
number. The control signal of the multiplexer is generated
by comparing Pdropout with uniform random. To support
the MCD layer with arbitrary Pdropout, a random number
generator is used in our design to generate uniform random.
For Masksembles, the masks are provided as inputs, avoiding
sampling in hardware. The inputs with mask values being one
are passed through to the outputs.

Algorithm 1 Pseudocode of MCD layer
1: Input: input[dropout size], keep rate
2: Output: output[dropout size]
3: for (i from 0 to dropout size) do ▷ #pragma PIPELINE
4: temp = input[i]
5: uniform random = random number generator()
6: if (uniform random > keep rate) then temp = 0
7: output[i] = temp * keep rate

Algorithm 2 Pseudocode of Masksembles layer
1: Input: input[mask size], mask index,
2: generated masks[mask num][mask size]
3: Output: output[mask size]
4: for (i from 0 to mask size) do ▷ #pragma PIPELINE
5: mask value = generated masks[mask index][i]
6: if (mask value == 0) then
7: output[i] = 0
8: else
9: output[i] = input[i]

V. EXPERIMENTS AND EVALUATION

Our optimization framework is implemented in Python
3.8.12, PyTorch 1.11.0, and Keras 2.9.0. We use Vivado-HLS

2020.1 for hardware implementation. QKeras 0.9.0 is used
for quantization. The latency and resource consumption are
obtained from C-synthesis reports provided by Vivado-HLS.
Vivado 2020.1 is used to run place and route for the final
designs. We set Xilinx Kintex XCKU115 as our target FPGA
board. All the designs are optimized by our spatial-temporal
mapping and algorithm-hardware co-exploration to ensure they
can be fitted into the target platform.

A. Resource Cost of Being Bayesian

Inserting dropout layers transforms conventional DNNs into
BayesNNs, enabling reliable uncertainty estimation required
by various safety-critical applications. To quantitatively inves-
tigate the hardware overhead imposed by the transformation,
we evaluate the resource consumption of Bayesian accelerators
against their non-Bayesian counterparts. Three BayesNNs and
datasets are used in our experiments, i.e., LetNet5 on MNIST,
ResNet-18 on CIFAR-10, and VGG-11 on SVHN. As we aim
to evaluate the resource cost of being Bayesian, all the models
use single-exit to eliminate the hardware overhead introduced
by the multi-exit optimization. We generate different Bayesian
accelerators with distinct numbers of dropout layers using
our proposed design flow from Section IV. For non-Bayesian
accelerators, we set the number of dropout layers as zero. In
order to fit BayesNNs onto FPGA, we apply quantization and
custom channel numbers to ease the memory requirements.
To further reduce compute resource consumption, we adopt
temporal mapping on all the hardware designs.

Figure 6 shows the resource consumption of Block RAM
(BRAM), DSP, Flip-Flop (FF) and Look-up Tables (LUTs) We
implement two different dropout types, MCD and Masksem-
bles with varied numbers of dropout layers for each model.
As can be observed in all three models, the BRAM and
DSP usage stays almost the same across different numbers
of dropout layers and dropout types. The reason is that
dropout layers do not contain compute and memory-intensive
operations. The designs of both MCD and Masksemble layers
can be implemented by mainly just using logic resources.
In contrast, an increasing trend can be observed in both FF
and LUT consumption when more dropout layers are inserted.
The most significant increase is found on MCD-based Bayes-
VGG, where nearly 13% more FF resources are utilized for
the insertion of 8 dropout layers. However, this overhead is
caused by inserting MCD layers after every convolution. With
our proposed partial dropout in Section III-B, the LUT and
FF resource overheads of one MCD layer are just around
1% ∼ 2%, demonstrating the resource-efficiency of our co-
design approach.

B. Latency Reduction of Masksembles and Spatial Mapping

By adopting a set of pre-defined dropout masks, Masksem-
bles eliminate the need for runtime Bernoulli sampling,
exhibiting higher hardware efficiency than MCD-based
BayesNNs. To quantitatively evaluate the hardware perfor-
mance improvement of Masksembles compared with MCD-
based BayesNNs, we generate different accelerators for both
approaches with distinct numbers of dropout layers. We set

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL. XX, NO. X, SEPTEMBER 20XX 7

Nets

ResNet18
LeNet

VGG11

Nu
m

be
r o

f l
ay

er
s

01
23
45
67
8

Re
so

ur
ce

 u
sa

ge
(%

)

0.0%
5.0%
10.0%
15.0%
20.0%
25.0%

(a) LUT Usage
Nets

ResNet18
LeNet

VGG11

Nu
m

be
r o

f l
ay

er
s

01
23
45
67
8

Re
so

ur
ce

 u
sa

ge
(%

)

0.0%
5.0%
10.0%
15.0%
20.0%
25.0%

(b) FF Usage
Nets

ResNet18
LeNet

VGG11

Nu
m

be
r o

f l
ay

er
s

01
23
45
67
8

Re
so

ur
ce

 u
sa

ge
(%

)

0.0%
5.0%
10.0%
15.0%
20.0%
25.0%

(c) BRAM Usage
Nets

ResNet18
LeNet

VGG11

Nu
m

be
r o

f l
ay

er
s

01
23
45
67
8

Re
so

ur
ce

 u
sa

ge
(%

)

0.0%
5.0%
10.0%
15.0%
20.0%
25.0%

(d) DSP Usage

masksembles mc_dropout

Fig. 5. Resource consumption of mask-based BayesNNs with LeNet, ResNet18 and VGG11 as network backbones. The quantization and custom number of
channels are applied to fit models onto FPGAs.

TABLE I
PERFORMANCE COMPARISON AMONG SE CNNS, MCD-ME, AND MASK-ME WITH 32-BIT FLOATING POINT (FP32).

Network Approach Acc-Opt ECE-Opt aPE-Opt

Accuracy FLOPs ECE FLOPs aPE FLOPs

Bayes-ResNet
SE 0.752± 0.002 1.00 0.0840± 0.0008 1.00 2.048± 0.643 1.00

MCD+ME 0.776 ± 0.001 1.019± 0.004 0.014 ± 0.001 0.672± 0.003 2.367 ± 0.847 0.586

Mask+ME 0.764± 0.004 1.032± 0.006 0.016± 0.001 0.605 ± 0.001 2.116± 1.301 0.462

Bayes-VGG
SE 0.693± 0.002 1.00 0.165± 0.006 1.00 1.287± 0.578 1.00

MCD+ME 0.747 ± 0.001 0.982 0.017 ± 0.001 0.45 ± 0.02 2.664± 0.721 0.343

Mask+ME 0.741± 0.001 0.982 0.019± 0.003 0.49± 0.05 2.741 ± 0.867 0.419

TABLE II
PERFORMANCE COMPARISON OF OUR FINAL FPGA DESIGNS WITH CPU, GPU, AND OTHER FPGA-BASED IMPLEMENTATIONS.

CPU GPU ASPLOS’18 [35] DATE’20 [32] DAC’21 [3] TPDS’22 [36] Our Work

Platform Intel Core i9-9900K NVIDIA RTX 2080 Altera Cyclone V Zynq XC7Z020 Arria 10
GX1150

Arria 10
GX1150 XCKU 115

Frequency (MHz) 3600 1545 213 200 225 220 181

Technology 14 nm 12 nm 28 nm 28 nm 20 nm 20 nm 20 nm

Power (W) 205 236 6.11 2.76 45.00 43.6 4.383

Latency (ms) 1.26 0.57 5.5 4.5 0.42 0.32 0.89

Energy Efficiency (J/Image) 0.258 0.134 0.033 0.012 0.019 0.014 0.004

the hls4ml optimization strategy as ”Resource” to ensure the
generated accelerators can be fitted onto the target FPGA
board. Figure 6(a)∼(c) show the normilzed latency of Bayes-
LetNet5, Bayes-ResNet and Bayes-VGG-11, respectively. As
it can be observed, the use of Masksembles layers can effec-
tively reduce the latency of the generated accelerators. This
latency reduction is more significant on Bayes-LetNet and
Bayes-VGG with a larger number of dropout layers.

Spatial mapping is another optimization that we propose to
reduce latency when more hardware resources are available on
the FPGA. To demonstrate the effectiveness of spatial mapping
in reducing latency, we evaluate accelerators with and without
spatial mapping optimization. As the type of dropout layer will
not affect this demonstration, we take MCD-based BayesNNs
as examples and apply partial masking by only inserting MCD
after the last convolutional layer. The hls4ml optimization
strategy is set as ”Latency” to ensure best latency performance.
Figure 6(d)∼(e) show the latency results of both optimized

and un-optimized accelerators with different numbers of MC
samples on three network backbones. As can be seen, the
latency of an unoptimized accelerator increases linearly with
the increase of MC samples. In contrast, the latency of spatial-
optimized accelerators stays almost the same when the number
of MC samples increases, demonstrating the effectiveness of
spatial mapping. The improvement of spatial mapping stems
from its mechanism of deploying multiple physical cores to
compute MC samples in parallel.

C. Effect of Multi-Exit Enhencement

To demonstrate the advantage of multi-exit BayesNNs over
the baseline approaches, we evaluate two multi-exit mod-
els, VGG19 and ResNet18 for image classification. Cifar100
dataset, a curated subset of a larger dataset scraped from
the web containing photo-realistic tiny 32 × 32 images with
a single main object, is used in this experiment. We use
Expected Calibration Error (ECE) [11] as a metric to evaluate

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL. XX, NO. X, SEPTEMBER 20XX 8

calibration ability. To measure predictive uncertainty, we mea-
sure the average predictive entropy (aPE) across a Gaussian
noise dataset with the same mean and variance as the training
data [3].

We compare three different implementations: i) Single-exit
model with only one exit at the end of the network (SE).
There is no MCD or Multi-Exit applied, which is the original
implementation of both the ResNet-18 and VGG-19. ii) MCD-
based BayesNN with multi-exit (MCD + ME). The MCD is
applied to every exit of the network. iii) Maskembles-based
BayesNN with multi-exit (Mask + ME). The Masksembles
layer is applied to every exit of the network. Stochastic gradi-
ent descent (SGD) is used with a weight decay of 5× 10−4,
an initial learning rate of 0.1 and a momentum of 0.9, along
with a batch size of 64.

As discussed previously, the usage of too many dropout
layers in a BayesNN can overregularize the network and
adversely affect performance. However, there is no standard
method to find the best balance between the level of dropout
and calibration. Therefore, a small grid search is performed
over different dropout configurations. For MCD layers, we
optimize the dropout rates from 0.125, 0.25, 0.375 and 0.5.
The scale parameter of the Masksemble layer is selected from
3, 4, 5 and 6. Similarly, the threshold of confidence-based
exiting [29] which optimally balances the computational cost
and the network performance is found through testing the same
thresholds as in [29]: 0.1, 0.15, 0.25, 0.5, 0.6, 0.7, 0.8, 0.9,
0.95, 0.99, 0.999. It is noted that two sets of results from
performing confidence-based exiting are calculated, using the
predictions at each exit or the largest possible ensemble at
each exit respectively. Each ensemble is an equally weighted

0 1 2 3
Number of Bayesian Layers

0.8

0.9

1.0

No
rm

al
ize

d
La

te
nc

y

(a) Latency comsumption of LeNet

mc_dropout
masksembles

2 4 6 8
Number of MC samples

0.1

0.2

0.3

La
te

nc
y

(m
s)

(d) Latency of MCD-LeNet

Latency (Unoptimized)
Latency (Optimized-Spatial)

0 1 2 3 4 5 6 7 8
Number of Bayesian Layers

0.6

0.8

1.0

No
rm

al
ize

d
La

te
nc

y

(b) Latency comsumption of ResNet18

2 3 4 5 6 7
Number of MC samples

0.1

0.2

0.3

La
te

nc
y

(m
s)

(e) Latency of MCD-ResNet18

0 1 2 3 4 5 6 7 8
Number of Bayesian Layers

0.4

0.6

0.8

1.0

No
rm

al
ize

d
La

te
nc

y

(c) Latency comsumption of VGG11

2 4 6 8
Number of MC samples

0.02

0.04

0.06

La
te

nc
y

(m
s)

(f) Latency of MCD-VGG11

Fig. 6. Latency reduction of different hardware optimization techniques.

average of the predictions from each exit, as in [41].
The grid search covers all combinations of the above

dropout configurations, which is applied to the networks.
The predictions from each of the exits and the ensembles
formed by averaging the results from each exit are calculated,
alongside the predictions from confidence exiting. The results
are presented in Table I. As the dropout rate of MCD and
the confidence threshold of multi-exit may affect accuracy,
calibration and uncertainty, three configurations for each im-
plementation and model are reported: those that achieve the
highest accuracy (Acc-Opt), the lowest ECE (ECE-Opt), and
the highest aPE (aPE-Opt). For each configuration, we also
calculate the FLOPs as a fraction of the SE implementation.

On ResNet18, our approach, MCD + ME, improves the
accuracy by 2.4% ±0.002% with only 0.019 times more
FLOPs compared with the SE implementation. In ECE-Opt
and aPE-Opt, both MCD + ME and Mask + ME achieve lower
ECE and higher aPE than SE approach. A similar trend can
also be observed in VGG-19. These results show that multi-
exit dropout-based BayesNNs can lead to better calibration
and uncertainty estimation while costing or fewer FLOPs.

D. Comparison with CPU, GPU, and FPGA implementations
To demonstrate the energy efficiency of our approach, we

also compare it against CPU, GPU, and other FPGA-based
implementations. The comparison uses MNIST dataset since
it is the most common dataset across different work [35], [32],
[3], [36]. As both [35] and [32] do not support Bayes-LeNet5,
we use their reported throughput (GOP/s) to estimate their
performance on Bayes-LeNet5. The performance is obtained
by using three MC samples. Both CPU and GPU performance
are quoted from the vanilla implementations of MCD-based
BayesNNs in [36]. Although there are some other BayesNN
accelerators [42], [31], they do not report any end-to-end
latency and energy consumption.

As shown in Table II, our design achieves 65 and 33 times
higher energy efficiency than CPU and GPU implementations,
despite the FPGA adopting 20nm technology while the CPU
adopting 14nm technology and the GPU adopting 12nm tech-
nology. Our accelerator also shows lower latency and better
energy efficiency than both [35] and [32]. Although both [3]
and [36] are faster than our design, they consume much higher
energy due to the high resource utilization and frequent data
transfer between on-chip and off-chip memory, leading to
nearly 5 and 4 times lower energy efficiency than our design.
Also, compared with their Verilog-based implementations,
our HLS-based accelerator has advantages in development
time [43], which can improve designer productivity and can
facilitate extending our approach to cover other NNs such
as LSTM [19]. Table III provides the power consumption
breakdown obtained from the Xilinx Power Estimator (XPE)
tool after place and route. For the MCD-based BayesNNs,
the dynamic power occupies 70% of the total power. The
logic&signal and IO consume most of the dynamic power,
accounting for 31% and 17%, respectively. This pattern is also
obseverd in the mask-based BayesNNs. The high IO power
consumption results from our spatial mapping strategy with
multiple MC engines running in parallel.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL. XX, NO. X, SEPTEMBER 20XX 9

TABLE III
POWER BREAKDOWN OF OUR FPGA-BASED ACCELERATOR.

Dynamic (W)
Static Total

Clocking Logic& BRAM IO DSPSignal

Bayes Used 0.365 1.407 0.421 0.728 0.166 1.295 4.383

MCD Percentage 8% 31% 10% 17% 4% 30% 100%

Bayes Used 0.355 1.235 0.514 0.685 0.153 1.294 4.235

Mask Percentage 8% 29% 12% 17% 3% 31% 100%

VI. CONCLUSION

This paper proposes an algorithm and hardware co-design
approach for accelerating dropout-based multi-exit Bayesian
Neural Networks (BayesNNs). On the algorithm side, we
propose novel multi-exit dropout-based BaeysNNs that achieve
high algorithmic performance with low computational and
memory overhead. At the hardware level, we introduce a trans-
formation framework to generate FPGA-based accelerators for
multi-exit dropout-based BayesNNs. Multiple optimizations
including the mix of spatial and temporal mappings are pro-
posed to further improve the overall performance of dropout-
based BayesNNs. Comprehensive experiments demonstrate
that our approach achieves higher algorithmic and energy
efficiency than state-of-the-art designs. To facilitate public
access to BayesNNs hardware accelerators, we have made
our code accessible as an open-source resource at: https:
//github.com/os-hxfan/BayesNN FPGA Acc.git In the
future, we aim to automate the transformation framework,
extend support for attention-based BayesNNs, and incorporate
capabilities such as run-time reconfiguration.

ACKNOWLEDGEMENT

The support of UK EPSRC grants (UK EPSRC grants
EP/L016796/1, EP/N031768/1, EP/P010040/1, EP/V028251/1
and EP/S030069/1) is gratefully acknowledged.

REFERENCES

[1] S. Dong et al., “A survey on deep learning and its applications,”
Computer Science Review, vol. 40, p. 100379, 2021.

[2] D. W. Otter et al., “A survey of the usages of deep learning for
natural language processing,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 32, no. 2, pp. 604–624, 2020.

[3] H. Fan et al., “High-performance FPGA-based accelerator for Bayesian
neural networks,” in Proceedings of the 2021 ACM/IEEE Design Au-
tomation Conference (DAC). IEEE, 2021, pp. 1–6.

[4] C. Leibig et al., “Leveraging uncertainty information from deep neural
networks for disease detection,” Scientific Reports, vol. 7, no. 1, pp.
1–14, 2017.

[5] F. Liang et al., “Bayesian neural networks for selection of drug sensitive
genes,” Journal of the American Statistical Association, vol. 113, no.
523, pp. 955–972, 2018.

[6] T. Azevedo et al., “Stochastic-yolo: Efficient probabilistic object detec-
tion under dataset shifts,” arXiv preprint arXiv:2009.02967, 2020.

[7] R. M. Neal, “Bayesian learning via stochastic dynamics,” in Advances in
Neural Information Processing Systems (NeurIPS), 1993, pp. 475–482.

[8] Y. Gal and Z. Ghahramani, “Dropout as a Bayesian approximation:
Representing model uncertainty in deep learning,” in International
Conference on Machine Learning (ICML), 2016, pp. 1050–1059.

[9] C. Blundell et al., “Weight uncertainty in neural network,” in Interna-
tional Conference on Machine Learning (ICML), 2015, pp. 1613–1622.

[10] B. Lakshminarayanan et al., “Simple and scalable predictive uncertainty
estimation using deep ensembles,” Advances in Neural Information
Processing Systems, vol. 30, 2017.

[11] Y. Ovadia et al., “Can you trust your model’s uncertainty? evaluating
predictive uncertainty under dataset shift,” Advances in Neural Informa-
tion Processing Systems (NeurIPS), vol. 32, 2019.

[12] J. Fowers et al., “A configurable cloud-scale dnn processor for real-
time ai,” in 2018 ACM/IEEE 45th Annual International Symposium on
Computer Architecture (ISCA). IEEE, 2018, pp. 1–14.

[13] Y.-H. Chen et al., “Eyeriss: An energy-efficient reconfigurable accelera-
tor for deep convolutional neural networks,” IEEE Journal of Solid-State
Circuits, vol. 52, no. 1, pp. 127–138, 2016.

[14] H. Fan et al., “Adaptable butterfly accelerator for attention-based NNs
via hardware and algorithm co-design,” in MICRO-55: 55th Annual
IEEE/ACM International Symposium on Microarchitecture, 2022.

[15] C. Zhang et al., “Caffeine: Toward uniformed representation and ac-
celeration for deep convolutional neural networks,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 38,
no. 11, pp. 2072–2085, 2018.

[16] F. Fahim et al., “hls4ml: An open-source codesign workflow to em-
power scientific low-power machine learning devices,” arXiv preprint
arXiv:2103.05579, 2021.

[17] A. Krizhevsky et al., “Imagenet classification with deep convolutional
neural networks,” Communications of the ACM, vol. 60, no. 6, pp. 84–
90, 2017.

[18] K. He et al., “Deep residual learning for image recognition,” in Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 770–778.

[19] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[20] N. Durasov et al., “Masksembles for uncertainty estimation,” in Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2021, pp. 13 539–13 548.

[21] Y. Ma et al., “Optimizing loop operation and dataflow in fpga ac-
celeration of deep convolutional neural networks,” in Proceedings of
the 2017 ACM/SIGDA International Symposium on Field-Programmable
Gate Arrays, 2017, pp. 45–54.

[22] L. V. Jospin et al., “Hands-on bayesian neural networks—a tutorial
for deep learning users,” IEEE Computational Intelligence Magazine,
vol. 17, no. 2, pp. 29–48, 2022.

[23] R. M. Neal et al., “Mcmc using hamiltonian dynamics,” Handbook of
Markov Chain Monte Carlo, vol. 2, no. 11, p. 2, 2011.

[24] M. Welling and Y. W. Teh, “Bayesian learning via stochastic gradient
langevin dynamics,” in International Conference on Machine Learning
(ICML), 2011, pp. 681–688.

[25] N. Srivastava et al., “Dropout: a simple way to prevent neural networks
from overfitting,” The journal of machine learning research, vol. 15,
no. 1, pp. 1929–1958, 2014.

[26] S. Laskaridis et al., “Adaptive inference through early-exit networks:
Design, challenges and directions,” in Proceedings of the 5th Interna-
tional Workshop on Embedded and Mobile Deep Learning, 2021, pp.
1–6.

[27] G. Huang et al., “Multi-scale dense networks for resource efficient image
classification,” in International Conference on Learning Representations
(ICLR), 2018.

[28] H. Lee and J.-S. Lee, “Students are the best teacher: Exit-ensemble
distillation with multi-exits,” arXiv preprint arXiv:2104.00299, 2021.

[29] Y. Kaya et al., “Shallow-deep networks: Understanding and mitigating
network overthinking,” in Proceedings of the 36th International Confer-
ence on Machine Learning, vol. 97. PMLR, 2019, pp. 3301–3310.

[30] H. Fan, C. Guo, and W. Luk, “Optimizing quantum circuit placement
via machine learning,” in 2022 59th ACM/IEEE Design Automation
Conference (DAC), 2022, pp. 19–24.

[31] Q. Wan et al., “Shift-BNN: Highly-efficient probabilistic bayesian
neural network training via memory-friendly pattern retrieving,” in 2021
54th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2021, pp. 885–897.

[32] H. Awano and M. Hashimoto, “BYNQNET: Bayesian neural network
with quadratic activations for sampling-free uncertainty estimation on
FPGA,” in 2020 Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE, 2020, pp. 1402–1407.

[33] H. Fan et al., “FPGA-based acceleration for bayesian convolutional
neural networks,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 41, no. 12, pp. 5343–5356, 2022.

[34] M. Ferianc et al., “Optimizing bayesian recurrent neural networks on
an fpga-based accelerator,” in 2021 International Conference on Field-
Programmable Technology (ICFPT). IEEE, 2021, pp. 1–10.

[35] R. Cai et al., “VIBNN: Hardware acceleration of bayesian neural
networks,” ACM SIGPLAN Notices, vol. 53, no. 2, pp. 476–488, 2018.

https://github.com/os-hxfan/BayesNN_FPGA_Acc.git
https://github.com/os-hxfan/BayesNN_FPGA_Acc.git

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL. XX, NO. X, SEPTEMBER 20XX 10

[36] H. Fan et al., “Accelerating Bayesian neural networks via algorithmic
and hardware optimizations,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 33, no. 12, pp. 3387–3399, 2022.

[37] M. Ferianc et al., “On the effects of quantisation on model uncertainty
in bayesian neural networks,” in Uncertainty in Artificial Intelligence.
PMLR, 2021, pp. 929–938.

[38] A. Kendall et al., “Bayesian Segnet: Model uncertainty in deep convo-
lutional encoder-decoder architectures for scene understanding,” arXiv
preprint arXiv:1511.02680, 2015.

[39] A. Kristiadi et al., “Being bayesian, even just a bit, fixes overconfidence
in relu networks,” arXiv preprint arXiv:2002.10118, 2020.

[40] A. Kendall et al., “Bayesian segnet: Model uncertainty in deep convo-
lutional encoder-decoder architectures for scene understanding,” arXiv
preprint arXiv:1511.02680, 2015.

[41] L. Qendro et al., “Early exit ensembles for uncertainty quantification,”
in Proceedings of Machine Learning for Health, ser. Proceedings of
Machine Learning Research, vol. 158. PMLR, 2021, pp. 181–195.

[42] Q. Wan et al., “Fast-BCNN: Massive neuron skipping in Bayesian
convolutional neural networks,” in 2020 53rd Annual IEEE/ACM In-
ternational Symposium on Microarchitecture (MICRO). IEEE, 2020,
pp. 229–240.

[43] M. Pelcat et al., “Design productivity of a high level synthesis compiler
versus HDL,” in 2016 International Conference on Embedded Computer
Systems: Architectures, Modeling and Simulation (SAMOS). IEEE,
2016, pp. 140–147.

Hao (Mark) Chen is a final-year MEng student
at Imperial College London. His research interests
include machine learning systems, domain-specific
languages for embedded systems, and software-
hardware co-design.

Liam Castelli obtained the M.S.c. degree in Artifi-
cial Intelligence from the Department of Computing
of Imperial College London, London, UK in 2022.
He is currently a Data Engineering Intern at Redica
Systems.

Martin Ferianc obtained an MEng in Electronic
and Information Engineering from Imperial College
London, London, UK in 2015. He is currently a PhD
candidate in the Department of Electronic and Elec-
trical Engineering at University College London. His
research interests include Bayesian neural networks,
deep learning and hardware acceleration of neural
networks.

Hongyu Zhou earned her Bachelor’s degree in
Industrial Design from Central South University,
Changsha, China, in 2019. She received her Mas-
ter of Research, with a specialization in Design
Pathway, from the Royal College of Art, London,
UK, in 2021. Currently, she is a Ph.D. candidate
at the School of Computer Science, University of
Sydney, Sydney, Australia. Her research interests
include human-computer interaction, virtual reality,
user experience and machine learning.

Shuanglong Liu received the B.Sc. and M.Sc. de-
grees from the Department of Electronic Engineer-
ing, Tsinghua University, Beijing, China, in 2010
and 2013 respectively, and Ph.D. degree in Electric
Engineering from Imperial College London, London,
U.K, in 2017. From 2017 to 2020, he was a Research
Associate with the Department of Computing, Impe-
rial College London. He is currently a Distinguished
Professor in the School of Physics and Electronics,
Hunan Normal University, Changsha, China. He has
published over 30 research papers in peer-reviewed

journals and international conferences. His current research interests include
reconfigurable and high-performance computing for Convolutional Neural
Networks (CNNs) and statistical inference problems.

Wayne Luk (Fellow, IEEE) received the M.A.,
M.Sc., and D.Phil. degrees in engineering and com-
puting science from Oxford University, Oxford, U.K.
He founded and leads the Custom Computing Group,
Department of Computing at Imperial College Lon-
don, where he is Professor of Computer Engineering.
He was a Visiting Professor at Stanford University,
Stanford, CA, USA. Dr. Luk is a Fellow of the
Royal Academy of Engineering and the BCS. He had
15 papers that received awards from international
conferences, and he received a Research Excellence

Award from Imperial College London. He was a founding Editor-in-Chief of
the ACM Transactions on Reconfigurable Technology and Systems, and has
been a member of the Steering Committee and Program Committee of various
international conferences.

Hongxiang Fan received the B.S. degree in elec-
tronic engineering from Tianjin University, Tianjin,
China, in 2017, and the M.Res. and D.Phil. de-
grees from the Department of Computing, Imperial
College London, London, U.K., in 2018 and 2022.
He is currently a research scientist at Samsung AI
Cambridge and an affiliated postdoctoral researcher
at the University of Cambridge. His current research
focuses on computer architecture, machine learning
and quantum computing.

	Introduction
	Background and Related Work
	Bayesian Neural Networks
	Dropout-based Approximations for BayesNNs
	MCD-based BayesNNs
	Masksembles

	Multi-Exit DNNs
	Related Work

	Multi-Exit Dropout-based BayesNNs
	Multi-Exit Enhancement
	Multi-Exit MCD-based BayesNNs
	Multi-Exit Masksembles

	Partial Dropout
	Compute Efficiency

	Transformation Framework
	Framework Overview
	Multi-Exit Dropout: Phase 1
	Spatial and Temporal Mappings: Phase 2
	Algorithm and Hardware Co-Exploration: Phase 3
	Generation of FPGA-based Accelerator: Phase 4

	Experiments and Evaluation
	Resource Cost of Being Bayesian
	Latency Reduction of Masksembles and Spatial Mapping
	Effect of Multi-Exit Enhencement
	Comparison with CPU, GPU, and FPGA implementations

	Conclusion
	References
	Biographies
	Hao (Mark) Chen
	Liam Castelli
	Martin Ferianc
	Hongyu Zhou
	Shuanglong Liu
	Wayne Luk
	Hongxiang Fan

