
When Monte-Carlo Dropout Meets Multi-Exit:
Optimizing Bayesian Neural Networks on FPGA

Hongxiang Fan†
Samsung AI Center &

University of Cambridge
Cambridge, UK

hongxiangfan@ieee.org

Mark Chen
Department of Computing
Imperial College London

London, UK
hao.chen20@imperial.ac.uk

Liam Castelli
Department of Computing
Imperial College London

London, UK
castelliliam@gmail.com

Zhiqiang Que
Department of Computing
Imperial College London

London, UK
z.que@imperial.ac.uk

He Li
Department of Electronics and Engineering

Southeast University
Nanjing, China

helix@seu.edu.cn

Kenneth Long
Department of Physics

Imperial College London
London, UK

k.long@imperial.ac.uk

Wayne Luk
Department of Computing
Imperial College London

London, UK
w.luk@imperial.ac.uk

Abstract—Bayesian Neural Networks (BayesNNs) have demonstrated
their capability of providing calibrated prediction for safety-critical
applications such as medical imaging and autonomous driving. However,
the high algorithmic complexity and the poor hardware performance of
BayesNNs hinder their deployment in real-life applications. To bridge
this gap, this paper proposes a novel multi-exit Monte-Carlo Dropout
(MCD)-based BayesNN that achieves well-calibrated predictions with
low algorithmic complexity. To further reduce the barrier to adopting
BayesNNs, we propose a transformation framework that can generate
FPGA-based accelerators for multi-exit MCD-based BayesNNs. Several
novel optimization techniques are introduced to improve hardware
performance. Our experiments demonstrate that our auto-generated
accelerator achieves higher energy efficiency than CPU, GPU, and other
state-of-the-art hardware implementations. Our code is publicly available
at: https://github.com/os-hxfan/MCME FPGA Acc.git

Index Terms—Bayesian Neural Networks, Multi-Exit Optimization,
Field Programmable Gate Array (FPGA)

I. INTRODUCTION

Deep neural networks (DNNs) have become a frontier of artificial
intelligence, with a variety of applications in many domains including
computer vision, natural language understanding, medical image
processing and scientific data analysis [1]. However, conventional
deep neural networks have an important drawback: they behave like
black boxes so can neither explain how the answers are obtained,
nor provide an estimate of their confidence in their correctness.
Bayesian Neural Networks (BayesNNs) [2] have been introduced to
address the lack of confidence estimation of conventional deep neural
networks, or non-Bayesian NNs (non-BayesNNs). The uncertainty-
aware feature of BayesNNs makes them more resilient to risks caused
by over-confident prediction of non-BayesNNs.

Nevertheless, there are two major challenges in deploying
BayesNNs in real-life applications. First, the high dimensionality of
modern BayesNNs significantly increases their algorithmic complex-
ity, making exact Bayesian inference intractable. Although various
approximation approaches, such as variational inference [3] and
Monte-Carlo Dropout (MCD) [4], have been introduced to reduce
computational overhead, these approaches perform worse in terms of
uncertainty quality and calibration ability [5] than traditional deep en-
sembles that consist of multiple DNNs. Second, even with approxima-
tions, the computational and memory demands of BayesNNs are still
much higher than those of non-BayesNNs due to Monte-Carlo (MC)
sampling, hindering their deployment in demanding applications,
especially those with real-time requirements. While there is extensive
research on hardware acceleration for deep learning algorithms, most

† Work was done while pursuing Ph.D. at Imperial College London.

existing efforts focus on domain-specific hardware [6]–[8] or design
automation tools [9], [10] for non-BayesNNs such as convolutional
NNs (CNNs) [11], [12] and long short-term memory (LSTM) [13].
Hence there is an urgent need for publicly accessible hardware
acceleration for BayesNNs.

To address the first challenge, this paper proposes a novel multi-
exit MCD-based BayesNN. Compared with traditional MCD-based
BayesNNs, our method is able to provide well-calibrated predictions.
Also, the proposed multi-exit MCD-based BayesNNs are less com-
putational and memory-intensive than conventional deep ensembles
while possessing the flexibility to generate arbitrary numbers of
MC samples. To overcome the second challenge, we propose to
accelerate multi-exit MCD-based BayesNNs on FPGA. A transforma-
tion framework is introduced to generate high-performance FPGA-
based accelerators for multi-exit MCD-based BayesNNs. With several
novel optimizations such as spatial-temporal mapping and algorithm-
hardware co-exploration, the generated accelerators achieve higher
energy efficiency than previous hardware implementations. Moreover,
this paper provides the first systematic study quantifying the bene-
fits and the overheads of accelerated BayesNNs against their non-
BayesNN counterparts. It would be of interest to DNN application
builders to understand the trade-offs in deploying FPGA designs of
BayesNNs to replace those implementing non-BayesNNs.

The contributions of this paper can be summarized as follows:

• A novel multi-exit MCD-based BayesNN with better calibration
ability than conventional MCD-based BayesNN, and higher com-
putational efficiency and flexibility over traditional deep ensembles.

• A design framework for transforming non-BayesNN models to
multi-exit BayesNN hardware accelerators with high hardware
performance and energy efficiency.

• Various optimization strategies including spatial-temporal mapping
and algorithm-hardware co-exploration for performance improve-
ment.

II. BACKGROUND AND RELATED WORK

A. Bayesian Neural Networks

BayesNNs are able to achieve robustness against overfitting and
to provide the estimation of their model uncertainty by means of
Bayesian inference. Instead of capturing point-wise weight values
like non-BayesNNs, BayesNNs are trained to learn the distribution
of the weights. The Bayes rule is adopted in learning the distribution
p(w|D) for the weights w with respect to training data D. It
is, however, computationally intractable to calculate the posterior

https://github.com/os-hxfan/MCME_FPGA_Acc.git


distribution p(w|D) analytically due to the high dimensionality of
modern BayesNNs. To address this issue, various approximation
methods have been introduced for BayesNNs [5]. Among these
approaches, Monte Carlo Dropout (MCD) [4] is drawing attention
as it provides an efficient way to estimate uncertainty, which is
achieved by interpreting the dropout training of DNNs as approximate
Bayesian inference for deep Gaussian processes.

MCD is implemented by applying a random filter-wise mask to the
output feature maps of a layer i with Fi dimensional filters, which
randomly drops out connections in a neural network. The values for
the mask Mi adopt a Bernoulli distribution p(Mi|pi) with binary
random variables (0 or 1) with probability pi. The inference of MCD-
based BayesNNs requires running multiple forward passes to generate
different MC samples. In other words, the uncertainty estimation
and calibration are achieved by feeding the same input through a
BayesCNN S times, each time with a different set of sampled masks
M . Dropouts have been employed in non-BayesNNs, typically during
training. In contrast, for BasyesNNs, MCD-based dropout takes place
during training as well as during inference.

B. Multi-Exit Network

Deep ensembles involve combining the predictions from multiple
individual neural networks. They enable high prediction accuracy
and high quality of calibration and uncertainty quantification [14].
However, training and using these networks can be prohibitively
expensive. An alternative approach is to use a multi-exit architecture.
By introducing intermediary classifiers before the final exit, multiple
predictions can be obtained in a single pass. Using an equally
weighted ensemble of the predictions from each of these exits can
be shown to achieve accurate uncertainty estimation [15].

While some architectures like the Multi-Scale DenseNet [16] have
been specifically designed for multi-exit, the most common approach
to developing these architectures is to use a known powerful backbone
architecture like ResNet, and then to attach intermediary classifiers
at particular points [17], [18]. These exit points can be selected in
a variety of ways by floating-point operation (FLOP) thresholds or
semantic groupings of convolutional layers [17], [18].

C. Related Work

Much research has taken place on deep neural networks and
their applications [1], and the use of FPGAs to accelerate deep
neural networks. Representative work in this area includes energy-
efficient CNN acceleration [7] and FPGA-based real-time AI cloud
services [6]. There has also been significant research into design
automation for deep neural networks. One example is the open source
tool hls4ml supporting an automatic design flow involving high-level
synthesis to promote low-power machine learning [10].

FPGA-based acceleration of BayesNNs has been reported re-
cently [19]. One example of an early design is Bynqnet, an
FPGA-based Bayesian neural network with quadratic activations for
sampling-free uncertainty estimation [20]. Efficient FPGA imple-
mentations for 2D and 3D BayesNNs have been reported [21].
Another example is VIBNN, an FPGA-based accelerator that supports
variational inference in BaynesNNs [22]. There is also research on
algorithmic and hardware optimizations of BayesNNs, exploiting
their structured sparsity and redundant computations [23]. In contrast
to these approaches, this work proposes to accelerate multi-exit
MCD-based BayesNNs on FPGA, achieving high energy efficiency
and well-calibrated predictions.

III. MULTI-EXIT MEETS MCD

As discussed in Section II, both multi-exit and MCD-based ap-
proaches are able to generate calibrated predictions, but they also
have clear limitations. Although MCD-based methods provide an
efficient approximation for BayesNNs, their predictive uncertainty
and calibration ability have been demonstrated to be worse than deep
ensembles [5]. The introduction of MCD layers after each convolution
in vanilla MCD-based BayesNNs can hamper their predictive power,
worsening both its accuracy and its uncertainty quantification [24].

In contrast, the multi-exit approach can be interpreted as deep
ensembles with a shared backbone network [15], but it lacks flex-
ibility when the calibration requires more predictive outputs than the
number of exits. To alleviate the drawbacks of both of these individual
approaches, we propose multi-exit MCD-based BayesNNs.

In
pu

t

M
C

Ex
it

(a) Single-exit BayesNN (b) Multi-exit non-BayesNN (c) Multi-exit BayesNN

Conv
Layer

MCD
Layer

In
pu

t

Ex
it-

0
Ex

it-
1

In
pu

t

M
C 

Ex
it-

0
M

C 
Ex

it-
1

Fig. 1. Difference between a single-exit BayesNN, a multi-exit NN and a
multi-ext BayesNN.

Figure 1 illustrates the difference between a vanilla MCD-based
Bayesian NN, a multi-exit non-BayesNN, and a multi-exit MCD-
based BayesNN. By introducing MCD layers in the multi-exit ar-
chitecture, the proposed approach can achieve a similar level of
calibration ability to deep ensembles. Moreover, multi-exit MCD-
based BayesNNs can perform MC sampling by running the in-
troduced MCD layers multiple times, which enables the ability to
generate arbitrary numbers of MC samples. As discussed above,
the usage of MCD layers after every convolution can introduce too
much regularization into the network, leading to worse accuracy
and worse uncertainty quantification [25]. Also, by placing MCD
layers as close to each exit as possible, fewer computations are
required since the non-Bayesian results can be cached and reused
for different MC samples. Therefore, rather than adopting the fully
MCD-based approach, we insert MCD layers starting from exits
towards the input. The number of MCD layers is a hyper-parameter
for optimization. We refer the layers without MCD applied as the
non-Bayesian component.

To demonstrate that the multi-exit MCD-based BayesNN with both
Bayesian and non-Bayesian components is still a mathematically
valid approximation to BayesNNs, one can interpret the non-Bayesian
component as a feature extractor. Therefore, given an M -exit archi-
tecture with inputs X, our approach first maps the data from input
space into feature space by using fi(X), where fi(.) denotes the
feature extractor of each exit with 1 ≤ i ≤ M . By replacing the X
with fi(X) in the mathematical proof provided by [4], our multi-
exit MCD-based BayesNN can be interpreted as the ensembles of
approximated BayesNNs built upon the feature space.

Another benefit of multi-exit BayesNNs is the lower computational
cost of generating MC samples than single-exit BayesNNs. Given that
the floating-point operations (FLOPs) of the main body and all the
exits are respectively FLOPmain and FLOPexit. As getting one
MC sample needs to run the entire network in single-exit BayesNNs,
the computational cost of running Nsample MC samples can be



formulated as:

Nsample × (FLOPmain + FLOPexit). (1)

In contrast, the required FLOPs of an Nexit multi-exit BayesNN to
get the same number of MC samples is:

FLOPmain +
Nsample

Nexit
× FLOPexit. (2)

The reduction rate is given by dividing Equation 1 by Equation 2,

1 + α
1

Nsample
+ α

Nexit

, (3)

where α = FLOPexit
FLOPmain

. The reduction rate varies by different multi-
exit architectures, depending on Nsample, Nexit and α.

Section II-B discusses the wide variety of possible methods in
which multi-exit networks can be created and trained. In this work,
the exit branches are placed according to the approach used in [17].
Semantic groupings are formed for each network, splitting the net-
work architecture into “blocks” separated by pooling layers. An exit
branch is then placed after each of these blocks. In order to allow
for more direct validation of the work performed in this paper, the
bidirectional distillation training method in [17] is used.

IV. TRANSFORMATION FRAMEWORK

A. Framework Overview

An overview of our transformation framework is presented in Fig-
ure 2. There are four phases in our proposed framework: (1) construc-
tion and optimization of multi-exit MCD-based BayesNNs, (2) spatial
and temporal mapping optimization, (3) design space exploration for
both algorithm and hardware design and (4) generation of BayesNN
accelerators based on HLS (High-Level Synthesis).

Given the neural architecture of a non-BayesNN as the input,
the first phase constructs a multi-exit MCD-based BayesNN by
optimizing the multi-exit architecture, the number of MCD layers,
and dropout rates. The second phase applies both temporal and
spatial mappings to improve the hardware performance. The third
phase involves algorithm and hardware co-exploration to optimize
design parameters such as bitwidth and execution strategy. The last
phase generates the corresponding HLS-based hardware accelerator.
We adopt the design flow and HLS template of non-Bayesian layers
from HLS4ML. To support the generation of BayesNN accelerators,
we add the HLS-based implementation of MCD layers and Keras-to-
HLS conversion into the design flow.

MCD Layer
(HLS Implementation)

Phase 1:
Multi-Exit

Optimization

Phase 3:
Algorithm&
Hardware 

Co-Exploration

Phase 4:
Generation 

of HLS-based 
BayesNN 

Accelerator
FPGA-based 
Accelerator

Phase 2:
Spatial 

& Temporal
Mapping

Neural 
Architecture

Fig. 2. Framework Overview.

B. Multi-exit Optimization: Phase 1

Since the number of exits is a design parameter in multi-exit
BayesNNs, it presents a larger design space than the conventional
BayesNNs. Given that a multi-exit BayesNN has Nexit exits, the
number of forward passes Npass required to produce the total number

of MC samples Nsample is given by Npass =
Nsample

Nexit
. The higher

number of Nexit and Npass may improve both the accuracy and
calibration. However, it can degrade hardware performance due to the
larger amount of computational and memory demands. As different
applications and tasks may have different requirements for algorithm
and hardware performance, we propose an optimization exploration
flow as shown in Figure 3.

The optimization flow starts from the model construction of multi-
exit BayesNNs given the input model architecture. By inserting Nexit

exits and an MCD layer with dropout rate Pdropout, different multi-
exit BayesNNs are constructed and trained on the target dataset.
When the training finishes, we evaluate different metrics for multi-
exit BayesNNs, including accuracy, calibration and the amount of
floating-point operations (FLOPs).

Based on the evaluated performance, the design points that do
not meet user constraints are filtered out. Then, according to the
optimization priority, design space exploration is performed to find
the optimal design configuration via grid search. The optimization
priority can be based on accuracy, calibration and the amount of
FLOPs. The final optimized design is fed into the next stage for
hardware design generation.

Model 
Architecture

Construct multi-exit BayesNNs 
with different:

1. Numbers of exits 𝑁!"#$
2. Dropout rate 𝑃%&'(')$

3. Number of forward pass 𝑁(*++

Train different BayesNNs
on the target dataset

Evaluate accuracy, 
calibration and FLOPs

User 
Constraints

Opt
Priority

Filter out design points 
that failed to meet 

constraints

Design space exploration 
via grid search

Done
(Optimized Config)

Start

Fig. 3. Optimization flow.

C. Spatial and Temporal Mappings: Phase 2

The inference of Bayesian components requires multiple forward
passes to obtain different MC samples. This Bayesian-related com-
putation exhibits concurrency along the sampling dimension com-
pared with conventional non-Bayesian NNs, enabling new parallelism
strategies in hardware design. Therefore, we propose two mapping
strategies, spatial and temporal mappings, to accelerate the Bayesian
component of Multi-exit MCD-based BayesNNs, which are illus-
trated in Figure 4.

Clone

Cached Tensor

MC
Sample 1

Cached Tensor

Cl
on

e MC
Sample 2

MC
Sample 3

(a) Spatial Mapping of Bayesian Components (b) Temporal Mapping of Bayesian Components

MC Engine 1

MC Engine 2

MC Engine 3

MC Engine

Concatenation

Map

Map

Map

Map

MC 
Sample 1
(Cycle 1)

MC 
Sample 2
(Cycle 2)

MC 
Sample 3
(Cycle 3)

Fig. 4. Spatial and temporal mappings for Bayesian components.



In both mapping strategies, the tensor generated from the last
non-Bayesian layer is cached and cloned into multiple copies. As
shown in Figure 4(a), the spatial mapping deploys separate hardware
MC Engines for different MC samples. Although spatial mapping
effectively reduces latency by spatially parallelizing the sampling
dimension, it also significantly increases resource use when the
number of MC samples becomes large. To alleviate this issue,
we propose temporal mapping that shares one MC Engine among
multiple MC samples. As shown in Figure 4(b), the cloned copies
are concatenated before feeding into the shared engine, which maps
different MC samples one by one onto a single MC Engine. Our
approach optimizes the mix of spatial and temporal mappings to meet
different latency and resource constraints.

D. Algorithm and Hardware Co-Exploration: Phase 3

Our hardware accelerator contains different design parameters,
such as the implementation strategy used in HLS4ML, the reuse
factor specified for each layer, and the mapping strategy adopted
for the Bayesian component. On the algorithmic side, given the
input model architecture, there are several hyper-parameters that
can be optimized, including the channel number and the bitwidth
of activations and weights. We adopt grid search to optimize both
algorithm and hardware design parameters with the requirement of
not reducing the algorithmic performance compared to the default
configurations. To reduce search costs, we experiment with heuristics
such that the bitwidth is chosen from {4, 6, 8, 16}, and the channel
number is selected from {C, C

2
, C

4
, C

8
} with C being the original

number of channels. Users can also define other search space.

E. Generation of FPGA-based Accelerator: Phase 4

The generation of hardware accelerators is based on HLS4ML
and our customized MCD design template. The generated HLS-
based BayesNN accelerators can then be fed into Vivado-HLS for
synthesis and implementation to get the final bitstream for onboard
testing. The pseudocode of HLS-based implementation of MCD is
presented in Algorithm 1. The HLS directive HLS PIPELINE is used
to improve the overall performance. We cache the temporary result in
the variable temp, before generating the final outputs. The hardware
design receives the stream input data from the preceding layer, and
produces stream outputs to the following layer. The dropout rate
Pdropout is a design parameter specified by the user at the beginning
of running each model. A multiplexer is used to select either 0 or the
result of the multiplication between inputs and dropout rate Pdropout.
The control signal of the multiplexer is generated by comparing
Pdropout with uniform random. To support the MCD layer with
arbitrary Pdropout, a random number generator is used in our design
to generate uniform random.

Algorithm 1 Pseudocode of MCD layer
1: Input: input[dropout size], keep rate
2: Output: output[dropout size]
3: for (i from 0 to dropout size) do ▷ #pragma PIPELINE
4: temp = input[i]
5: uniform random = random number generator()
6: if (uniform random > keep rate) then temp = 0
7: output[i] = temp * keep rate

V. EXPERIMENTS AND EVALUATION

Our optimization framework is implemented in Python 3.8.12,
PyTorch 1.11.0, and Keras 2.9.0. We use Vivado-HLS 2020.1 for

hardware implementation. QKeras is used for quantization. The
latency and resource consumption are obtained from C-synthesis
reports provided by Vivado-HLS. Vivado 2020.1 is used to run place
and route for the final designs. We set Xilinx Kintex XCKU115 as
our target FPGA board. All the designs are optimized by our spatial-
temporal mapping and algorithm-hardware co-exploration to ensure
they can be fitted into the target platform.

A. Cost of Being Bayesian

The first experiment evaluates the hardware cost of supporting
BayesNNs on FPGA. Compared with non-BayesNN designs, the
hardware overhead of BayesNN accelerators comes from the use
of MCD layers and the need to run multiple MC samples. To
quantitatively investigate the cost, we evaluate the three BayesNNs
on different datasets, i.e., LetNet5 on MNIST, ResNet-18 on CIFAR-
10, and VGG-11 on SVHN. As this experiment aims to evaluate the
cost of being Bayesian, we use one exit on each model to eliminate
the hardware overhead introduced by the multi-exit optimization.
The custom configurations of these models, including quantization
channel settings, are available in our open-sourced code. The results
are presented in Figure 5.

To evaluate the resource overhead, we generate and synthesize
the designs using temporal mapping (Section IV-C) with different
numbers of MCD layers. The resource consumption of Block RAM
(BRAM), DSP, Flip-Flop (FF) and LUT is shown on the left
of Figure 5. The utilization of logic resources, including FF and
LUT, shows an increasing trend when the number of MCD layers
becomes larger. The increase of DSP is not significant, except for
Bayes-VGG11 which has an 8% increase with 7 MCD layers. As the
design of the MCD layer does not require BRAM in the design, the
BRAM consumption remains the same across different numbers of
MCD layers on all three models. To measure the latency cost of MC
sampling, we evaluate the designs with one MCD layer using different
numbers of MC samples. To demonstrate the effect of spatial mapping
optimization, we compare the latency of two implementations with
and without spatial mapping. For the unoptimized version, we assume
a single engine is used for multiple MC samples. The right of Figure 5
shows an increase in latency when the number of MC samples
becomes large in the unoptimized implementations. In contrast, due
to the parallelization of different MC samples, the latency cost of
spatial mapping almost stays the same with the increasing number of
MC samples, demonstrating the effectiveness of spatial mapping.

B. Effect of Multi-Exit BayesNNs

To demonstrate the advantage of multi-exit BayesNNs over the
baseline approaches, we evaluate two commonly-used multi-exit
models, VGG19 and ResNet18 for image classification. Cifar100
dataset, a curated subset of a larger dataset scraped from the web
containing photo-realistic tiny 32 × 32 images with a single main
object, is used in this experiment.

We compare four different implementations: i) Single-exit model
with only one exit at the end of the network (SE). There is no
MCD or Multi-Exit applied, which is the original implementation of
both the ResNet-18 and VGG-19. ii) MCD-based BayesNN without
multi-exit (MCD). The MCD is only applied to the single exit of the
network. iii) Multi-exit model without MCD (ME). We add one exit
after each ResNet and VGG block to make multiple exits. iv) MCD-
based BayesNN with multi-exit (MCD + ME). The MCD is applied
to every exit of the network. Stochastic gradient descent (SGD) is
used with a weight decay of 5× 10−4, an initial learning rate of 0.1
and a momentum of 0.9, along with a batch size of 64.



TABLE I
PERFORMANCE COMPARISON AMONG SE CNNS, MCD BAYESNNS, ME AND MCD-ME BAYESNNS WITH 32-BIT FLOATING POINT (FP32).

ResNet18 (FP32) VGG19 (FP32)

Acc-Opt ECE-Opt Acc-Opt ECE-Opt

Accuracy FLOPs ECE FLOPs Accuracy FLOPs ECE FLOPs

SE 0.752± 0.002 1.00 0.0840± 0.0008 1.00 0.693± 0.002 1.00 0.165± 0.006 1.00

MCD 0.758± 0.002 1.00 0.069± 0.001 1.00 0.696± 0.004 1.00 0.131± 0.006 1.00

ME 0.7719± 0.0006 1.026± 0.003 0.017± 0.002 1.026± 0.003 0.747± 0.002 0.977 0.025± 0.001 0.46± 0.05

MCD+ME (Ours) 0.776± 0.001 1.019± 0.004 0.014± 0.001 0.672± 0.003 0.747± 0.001 0.982 0.017± 0.001 0.45± 0.02

TABLE II
PERFORMANCE COMPARISON OF OUR FINAL FPGA DESIGNS WITH CPU, GPU, AND OTHER FPGA-BASED IMPLEMENTATIONS.

CPU GPU ASPLOS’18 [22] DATE’20 [20] DAC’21 [26] TPDS’22 [23] Our Work

Platform Intel Core i9-9900K NVIDIA RTX 2080 Altera Cyclone V Zynq XC7Z020 Arria 10
GX1150

Arria 10
GX1150 XCKU 115

Frequency (MHz) 3600 1545 213 200 225 220 181

Technology 14 nm 12 nm 28 nm 28 nm 20 nm 20 nm 20 nm

Power (W) 205 236 6.11 2.76 45.00 43.6 4.6

Latency (ms) 1.26 0.57 5.5 4.5 0.42 0.32 0.89

Energy Efficiency (J/Image) 0.258 0.134 0.033 0.012 0.019 0.014 0.004

Latency 
Reduced

Fig. 5. Resource consumption and latency of Bayes-LeNet, Bayes-ResNet18
and Bayes-VGG11 with quantization and custom number of channels.

As discussed previously, the usage of too many dropout layers
in a BayesNN can overregularize the network and adversely affect
performance. However, there is no standard method to find the best
balance between the level of dropout and calibration. Therefore, a
small grid search is performed over the following dropout rates:
0.125, 0.25, 0.375, 0.5. Similarly, the confidence threshold which op-
timally balances the computational cost and the network performance
is found through testing the same thresholds as in [18]: 0.1, 0.15,

0.25, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99, 0.999. It is noted that two sets
of results from performing confidence-based exiting are calculated,
using the predictions at each exit or the largest possible ensemble at
each exit respectively. Each ensemble is an equally weighted average
of the predictions from each exit, as in [15].

The grid search covers all combinations of the above two param-
eters, which is applied to the applicable networks. The predictions
from each of the exits and the ensembles formed by averaging the
results from each exit are calculated, alongside the predictions from
confidence exiting. The best results are presented in Table I with the
calibration captured by expected calibration error (ECE) [23]: a low
value of ECE denotes a higher quality. As the dropout rate of MCD
and the confidence threshold of multi-exit may affect both accuracy
and calibration, two configurations for each implementation and
model are reported: those that achieve the highest accuracy (Acc-Opt)
and those with the lowest ECE (Acc-ECE). For each configuration,
we also calculate the FLOPs as a fraction of the SE implementation.

On ResNet18, our approach, MCD + ME, improves the accuracy
by 2.4% ±0.002% with only 0.019 times more FLOPs compared
with the SE implementation. Our method also shows higher accuracy
than both MCD and ME implementations. In Acc-ECE, we achieve
the lowest ECE and FLOPs among four implementations. A similar
trend can also be observed in VGG-19. Moreover, our approach can
match or outperform both of the methods individually, while costing
a similar amount of FLOPs. The best model is able to massively
reduce the ECE of the SE implementation by 0.148 ± 0.006, an
improvement of almost 90%, while costing less than half the amount
of FLOPs. These results show that multi-exit BayesNNs can lead to
better calibrated and more powerful networks, while costing similar
or fewer FLOPs.

C. Comparison with CPU, GPU, and FPGA implementations

To demonstrate the energy efficiency of our approach, we also
compare it against CPU, GPU, and other FPGA-based implemen-
tations. The comparison uses MNIST dataset since it is the most
common dataset across different work [20], [22], [23], [26]. As



TABLE III
POWER BREAKDOWN OF OUR FPGA-BASED ACCELERATOR.

Dynamic (W)
Static Total

Clocking Logic& BRAM IO DSPSignal

Used 0.374 1.359 0.422 0.998 0.191 1.299 4.6

Percentage 8% 30% 9% 21% 4% 28% 100%

both [22] and [20] do not support Bayes-LeNet5, we use their reported
throughput (GOP/s) to estimate their performance on Bayes-LeNet5.
The performance is obtained by using three MC samples. Both CPU
and GPU performance are quoted from the vanilla implementations
of MCD-based BayesNNs in [23]. Although there are some other
BayesNN accelerators [19], [27], they do not report any end-to-end
latency and energy consumption.

As shown in Table II, our design achieves 65 and 33 times higher
energy efficiency than CPU and GPU implementations, despite the
FPGA adopting 20nm technology while the CPU adopting 14nm
technology and the GPU adopting 12nm technology. Our accelerator
also shows lower latency and better energy efficiency than both [22]
and [20]. Although both [26] and [23] are faster than our design, they
consume much higher energy due to the high resource utilization
and frequent data transfer between on-chip and off-chip memory,
leading to nearly 5 and 4 times lower energy efficiency than our
design. Also, compared with their Verilog-based implementations,
our HLS-based accelerator has advantages in development time [28],
which can improve designer productivity and can facilitate extending
our approach to cover other NNs such as LSTM [13]. Table III
provides the power consumption breakdown obtained from the Xilinx
Power Estimator (XPE) tool after place and route. The dynamic
power occupies 72% of the total power. The logic&signal and IO
consume most of the dynamic power, accounting for 30% and 21%,
respectively. The high IO power consumption results from our spatial
mapping strategy with multiple MC engines running in parallel.

VI. CONCLUSION

This paper proposes a novel multi-exit Monte-Carlo Dropout
(MCD)-based Bayesian Neural Networks (BayesNNs). To facilitate
its deployment in real-life applications, a transformation framework
is developed to produce FPGA-based accelerators for multi-exit
MCD-based BayesNNs. Several novel hardware optimizations are
introduced for performance improvement. Comprehensive experi-
ments demonstrate that our approach achieves higher algorithmic and
energy efficiency than state-of-the-art designs. In the future, we aim
to optimize the design with zero skipping, support attention-based
BayesNNs, and include capabilities such as run-time reconfiguration.

ACKNOWLEDGEMENT

The support of UK EPSRC grants (UK EPSRC grants
EP/L016796/1, EP/N031768/1, EP/P010040/1, EP/V028251/1 and
EP/S030069/1) is gratefully acknowledged.

REFERENCES

[1] S. Dong et al., “A survey on deep learning and its applications,”
Computer Science Review, vol. 40, p. 100379, 2021.

[2] R. M. Neal, “Bayesian learning via stochastic dynamics,” in Advances in
Neural Information Processing Systems (NeurIPS), 1993, pp. 475–482.

[3] C. Blundell et al., “Weight uncertainty in neural network,” in Interna-
tional Conference on Machine Learning (ICML), 2015, pp. 1613–1622.

[4] Y. Gal and Z. Ghahramani, “Dropout as a Bayesian approximation:
Representing model uncertainty in deep learning,” in International
Conference on Machine Learning (ICML), 2016, pp. 1050–1059.

[5] Y. Ovadia et al., “Can you trust your model’s uncertainty? evaluating
predictive uncertainty under dataset shift,” Advances in Neural Informa-
tion Processing Systems (NeurIPS), vol. 32, 2019.

[6] J. Fowers et al., “A configurable cloud-scale dnn processor for real-
time ai,” in 2018 ACM/IEEE 45th Annual International Symposium on
Computer Architecture (ISCA). IEEE, 2018, pp. 1–14.

[7] Y.-H. Chen et al., “Eyeriss: An energy-efficient reconfigurable accelera-
tor for deep convolutional neural networks,” IEEE Journal of Solid-State
Circuits, vol. 52, no. 1, pp. 127–138, 2016.

[8] H. Fan et al., “Adaptable butterfly accelerator for attention-based NNs
via hardware and algorithm co-design,” in MICRO-55: 55th Annual
IEEE/ACM International Symposium on Microarchitecture, 2022.

[9] C. Zhang et al., “Caffeine: Toward uniformed representation and ac-
celeration for deep convolutional neural networks,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 38,
no. 11, pp. 2072–2085, 2018.

[10] F. Fahim et al., “hls4ml: An open-source codesign workflow to em-
power scientific low-power machine learning devices,” arXiv preprint
arXiv:2103.05579, 2021.

[11] A. Krizhevsky et al., “Imagenet classification with deep convolutional
neural networks,” Communications of the ACM, vol. 60, no. 6, pp. 84–
90, 2017.

[12] K. He et al., “Deep residual learning for image recognition,” in Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 770–778.

[13] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[14] S. Fort et al., “Deep ensembles: A loss landscape perspective,” arXiv
preprint arXiv:1912.02757, 2019.

[15] L. Qendro et al., “Early exit ensembles for uncertainty quantification,”
in Proceedings of Machine Learning for Health, ser. Proceedings of
Machine Learning Research, vol. 158. PMLR, 2021, pp. 181–195.

[16] G. Huang et al., “Multi-scale dense networks for resource efficient image
classification,” in International Conference on Learning Representations
(ICLR), 2018.

[17] H. Lee and J.-S. Lee, “Students are the best teacher: Exit-ensemble
distillation with multi-exits,” arXiv preprint arXiv:2104.00299, 2021.

[18] Y. Kaya et al., “Shallow-deep networks: Understanding and mitigating
network overthinking,” in Proceedings of the 36th International Confer-
ence on Machine Learning, vol. 97. PMLR, 2019, pp. 3301–3310.

[19] Q. Wan et al., “Shift-BNN: Highly-efficient probabilistic bayesian neu-
ral network training via memory-friendly pattern retrieving,” in 2021
54th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2021, pp. 885–897.

[20] H. Awano and M. Hashimoto, “BYNQNET: Bayesian neural network
with quadratic activations for sampling-free uncertainty estimation on
FPGA,” in 2020 Design, Automation & Test in Europe Conference &
Exhibition (DATE). IEEE, 2020, pp. 1402–1407.

[21] H. Fan et al., “FPGA-based acceleration for bayesian convolutional
neural networks,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 41, no. 12, pp. 5343–5356.

[22] R. Cai et al., “VIBNN: Hardware acceleration of bayesian neural
networks,” ACM SIGPLAN Notices, vol. 53, no. 2, pp. 476–488, 2018.

[23] H. Fan et al., “Accelerating Bayesian neural networks via algorithmic
and hardware optimizations,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 33, no. 12, pp. 3387–3399, 2022.

[24] A. Kendall et al., “Bayesian Segnet: Model uncertainty in deep convo-
lutional encoder-decoder architectures for scene understanding,” arXiv
preprint arXiv:1511.02680, 2015.

[25] L. Qendro et al., “Stochastic-Shield: A probabilistic approach towards
training-free adversarial defense in quantized cnns,” in Proceedings of
the 1st Workshop on Security and Privacy for Mobile AI, 2021, p. 1–6.

[26] H. Fan et al., “High-performance FPGA-based accelerator for Bayesian
neural networks,” in Proceedings of the 2021 ACM/IEEE Design Au-
tomation Conference (DAC). IEEE, 2021, pp. 1–6.

[27] Q. Wan et al., “Fast-BCNN: Massive neuron skipping in Bayesian convo-
lutional neural networks,” in 2020 53rd Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 2020, pp. 229–240.

[28] M. Pelcat et al., “Design productivity of a high level synthesis compiler
versus HDL,” in 2016 International Conference on Embedded Computer
Systems: Architectures, Modeling and Simulation (SAMOS). IEEE,
2016, pp. 140–147.


	Introduction
	Background and Related Work
	Bayesian Neural Networks
	Multi-Exit Network
	Related Work

	Multi-Exit Meets MCD
	Transformation Framework
	Framework Overview
	Multi-exit Optimization: Phase 1
	Spatial and Temporal Mappings: Phase 2
	Algorithm and Hardware Co-Exploration: Phase 3
	Generation of FPGA-based Accelerator: Phase 4

	Experiments and Evaluation
	Cost of Being Bayesian
	Effect of Multi-Exit BayesNNs
	Comparison with CPU, GPU, and FPGA implementations

	Conclusion
	References

