
Advancing AI-assisted Hardware Design with Hierarchical Decentralized
Training and Personalized Inference-Time Optimization

Hao (Mark) Chen†, Zehuan Zhang†, Wanru Zhao‡

Nicholas Lane‡, Wayne Luk†, Hongxiang Fan†
†Imperial College London, London, UK

{hc1620, zehuan.zhang22, w.luk, hongxiang.fan}@imperial.ac.uk
‡University of Cambridge, Cambridge, UK

{wz341, ndl32}@cam.ac.uk

Abstract—Recent years have witnessed a significant increase in
the adoption of AI techniques to enhance electronic design au-
tomation. In particular, the emergence of Large Language Models
(LLM) has sparked significant interest in LLM-assisted hardware
design generation, spanning applications from classical digital
circuits to quantum computing. Despite substantial progress in
this direction, the quality of LLM-generated hardware design
still cannot meet the requirements for practical deployment. In
this work, we identify three critical challenges hindering the
development of LLM-assisted hardware design generation: 1)
limited data availability, 2) varied data quality, 3) inadequate
inference-time efficiency. To address these fundamental chal-
lenges, this paper introduces a two-stage framework for AI-
assisted hardware design by exploring decentralized training
and personalized inference. In the first stage, we propose to
harness private domain design sources through a hierarchical
decentralized training mechanism that addresses data-sharing
constraints. To mitigate the impact of low-quality data, we
identify optimization opportunities in hardware generation tasks,
using user-defined metrics for model aggregation. The second
stage focuses on client personalization to enhance both speed
and quality. We introduce a new metric, Trueput, to ana-
lyze LLM-assisted hardware generation efficiency. To optimize
Trueput, we implement personalized inference-time acceleration
and customized sampling strategies. Evaluating both classical and
quantum benchmarks, our experimental results demonstrate that
the proposed two-stage framework can significantly improve the
model capability for hardware design generation. As orthogonal
enhancements to existing methods, our framework can achieve
33% ∼ 50% semantic accuracy improvement and 2.3 times
speedup, depending on the difficulty of the generation tasks.
Both the code and benchmarks will be released publicly upon
the paper’s acceptance.

I. INTRODUCTION

Recent advancements in Large Language Models (LLMs)
has demonstrated their great potential in automated software
programming [16] and debugging [17]. This impressive capa-
bility has sparked significant research and industrial interest in
leveraging LLMs to automate hardware design development
for both classical and quantum domains. In the classical
hardware design, extensive research has targeted RTL design
generation [4], [28], [29], [31], [43], High-Level Synthesis
(HLS) coding [26], [47], [48], and hardware debugging [9],
[44], [49]. In quantum design generation, IBM has pioneered
the use of LLMs for quantum programming [7], which has
been integrated into their Qiskit Code Assistant tool*.

*https://docs.quantum.ibm.com/guides/qiskit-code-assistant

Fig. 1: An overview of our proposed two-stage framework for
the future of AI-assisted hardware design.

Although significant research efforts have been devoted to
exploring LLM-assisted design generation for both classical
and quantum hardware, there are still three key challenges
hindering their practical use and deployment in assisting
hardware design:
• Challenge-1: Limited availability of hardware design

sources for training. Due to the low-resource nature of
hardware description languages, the amount of publicly
accessible classical and quantum design sources is much
lower than that of software programs. For example, the size
of the Qiskit dataset [7] is more than 1000 times smaller
than that of the Python dataset [30].

• Challenge-2: Varied quality of training data. High-quality
hardware designs are often proprietary and unavailable to
the public. The existing training data sourced from public
repositories may lack the embedded knowledge necessary
for designing high-quality hardware [29].

• Challenge-3: Insufficient generation quality. Existing LLM-
assisted methods still exhibit limited accuracy in hardware
generation tasks [30]. The lack of personalized and cus-
tomized optimizations during deployment time further limits
the potential of LLM for hardware design generation.

Therefore, current LLM-assisted hardware generation is still
in its early stages, facing significant challenges that hinder its
practical deployment.

To fully unleash the potential of generative AI for the
future of AI-assisted hardware design, this work proposes a

https://docs.quantum.ibm.com/guides/qiskit-code-assistant

two-stage framework by leveraging decentralized and person-
alized learning. To address Challenge-1 of data availability,
we aim to harness private domain design sources through a
hierarchical decentralized training mechanism that addresses
data-sharing constraints. This proposed approach includes
recent advancements in federated learning [36] and model
merging [50], introducing a novel hierarchical model update
mechanism to facilitate broad adoption among users and
organizations by accommodating varied hardware capabilities,
communication infrastructures, and individual preferences. To
tackle Challenge-2 of data quality, we propose a metric-based
model aggregation and merging strategy. Although data quality
control in the decentralized setting is a challenging task [2],
[8], [21], we identify the unique optimization opportunities
for hardware design code such as correctness and perfor-
mance. To overcome Challenge-3 of generation quality, we
propose personalized inference-time optimizations to enhance
the generation capability. This includes speed optimization
using inference-time multi-token acceleration and quality im-
provement through customized output token sampling. As
shown in Fig. 1, these optimizations follow the decentralized
training process, forming a general two-stage framework for
the future of AI-assisted hardware design.

Overall, our contributions can be summarized:
• A hierarchical decentralized training paradigm with metric-

based model aggregation, facilitating a broader and more
diverse pool of participants for collaborative training in AI-
assisted hardware design (Sec. IV).

• Personalized inference-time acceleration together with cus-
tomized sampling strategies, improving both processing
speed and design quality of LLM for automatic hardware
generation (Sec. V).

• A comprehensive benchmarking and evaluation of the pro-
posed two-stage framework in both classical and quantum
hardware design, highlighting the effectiveness and versatil-
ity of our approach (Sec. III & Sec. VI).

II. BACKGROUND AND RELATED WORK

A. Decentralized Training

Decentralized training distributes the model training across
multiple nodes and devices, with only the communication of
weights or gradients for model updates. The primary benefits
of decentralized training are two-fold: 1) Proprietary data
preservation: By maintaining data locally on the client side
for training, decentralized training circumvents data-sharing
constraints. 2) Compute efficiency: The vast computational
resources available on billions of client devices can be utilized
for training. In this paper, we mainly focus on two main-
streaming decentralized training: federated learning and model
merging. Other advanced decentralization techniques, such as
gossip learning [12], are left in future work. It is worth noting
that our proposed framework is general and can be extended
to accommodate any decentralized training approaches.

1) Federated Learning: As a promising approach to achieve
decentralized deep learning [40], federated learning [19], [36]

has been extensively studied and optimized over the past
decade. The key concept of federated learning is to move
model training from a central server to distributed client
devices. Depending on the structure of parties (e.g. organiza-
tions or individual clients), the scale of participants, and data
characteristics, federated learning is typically categorized into
cross-device and cross-silo methods [18]. By performing the
training locally on client devices, federated learning period-
ically collects and aggregates model updates from different
clients. Following the introduction of the classical FedAvg
algorithm [33], recent research in federated learning has pri-
marily focused on addressing challenges related to data and
system heterogeneity [51] to enable practical deployment.

2) Model Merging: With the recent advancements in lan-
guage models and the increasing number of open-sourced pre-
trained models [46], significant research efforts have been
focused on model merging that integrates the weights of mul-
tiple different models to enhance the general capability of the
merged model without the need to access the original training
data [15]. As the data are not shared during model merging, it
provides an efficient and flexible way to learn the different ex-
pert knowledge by merging multiple domain-specific models.
To preserve the generalizability and capacity of the merged
model, various techniques [50] have been introduced such
as weighted-based merging [32], [53], subspace-based meth-
ods [52], and routing-based approaches [35]. Mergekit [11]
provides an integrated package designed to support numerous
SOTA model merging techniques in a resource-efficient man-
ner.

B. Optimization of LLM Inference

Various techniques, such as quantization , and prunning,
have been introduced to improve the inference efficiency of
LLM in terms of generation quality and proceeding speed.
This paper mainly focuses on optimization techniques that
avoid time-consuming re-training and major modifications to
the model architecture.

1) Speculative Decoding & Parallel Decoding: The autore-
gressive nature of LLM inference predicts tokens sequentially,
introducing significant data dependency and making the per-
formance heavily memory-bound. To mitigate these issues,
previous research has explored multi-token prediction ap-
proaches, where output tokens are generated in parallel rather
than sequentially. Speculative decoding [24], [34] and parallel
decoding [3], [5] are two mainstreaming approaches for multi-
token generation, both following an iterative guess-and-verify
process. During the guessing step, speculative decoding adopts
a separate model to generate multiple draft tokens, while
parallel decoding employs lightweight prompt tokens and
embedding for multi-token drafting. In the verification step,
the original model or another reward model is deployed to
validate the correctness of the tokens generated during the
guessing phase.

2) Inference-Time Scaling Strategy: Due to the slowing
pace of LLM training law, recent research has investigated
inference-time optimization to boost model performance [41].

One primary approach is self-improvement refinement, such
as recursive introspection [38], where the model iteratively
refines its answer conditioned on previously generated content.
Another method adopts the search-and-verify paradigm [27],
[45], in which the LLM performs multiple samplings with a
verifier deployed in assisting the searching process to improve
the final answer. This verifier can be a process-based reward
model or an end-to-end evaluator to assess the quality of the
generated solution.

C. Related Work

Hierarchical training has been investigated in previous re-
search on federated learning to address network heterogeneity
issues [1], [10], [14]. In contrast to previous studies, this paper
considers diverse clients’ conditions in the context of hardware
design generation and explores a hierarchical decentralized
training with a hybrid use of federate learning and model
merging, encouraging a broader and more diverse pool of
participants.

Applying client personalization after the training of global
models has been investigated in the contexts of federated
learning [20]. Different basic fine-tuning approaches have
been employed for model personalization, such as regularised
fine-tuning [42] and selective parameter method [25]. More
advanced techniques, such as mete-learning [13], [22], have
been also explored for client personalization. In our work,
we focus on exploring unsupervised client personalization
to accelerate LLM inference, complemented by customized
sampling strategies to enhance generation quality.

III. FRAMEWORK OVERVIEW AND BENCHMARKS

A. Framework Overview

An overview of our proposed framework is illustrated
in Fig. 1. Designed to leverage private-domain data for model
training with privacy consideration while maximizing de-
ployment efficiency and performance, our framework mainly
consists of two stages: decentralized training and personalized
inference-time optimization. These stages can be applied iter-
atively to collaboratively enhance the model’s capabilities for
AI-assisted hardware design.

The first stage of decentralized training features a hierarchi-
cal mechanism (Sec. IV-A) with hybrid federated learning and
model merging, which facilitates a broader and more diverse
pool of participants by considering varying hardware capa-
bilities, connection restrictions, and individual preferences. In
the second stage, different inference-time optimizations are
personalized (Sec. V) for each client to enhance the inference
speed and generation quality, with different hyperparameters
optimized and customized to maximize the deployment per-
formance and efficiency for diverse use cases.

B. Benchmarks

To demonstrate the effectiveness of our approaches, we
perform evaluation on two different benchmarks: one for
classical hardware and the other for quantum hardware.

FL

FLOrganizations,
Institutions,
and Clients

with Reliable
Connections

Parties with Communication
or Geometric Restrictions

FL

P
h

as
e1

: H
yb

ri
d

D

e
ce

n
tr

al
iz

e
d

 T
ra

in
in

g Phase2: Model
Merging

Fig. 2: The vision and overview of our proposed framework
for the future of AI-assisted hardware design.

Classical Hardware Benchmark. To validate the appli-
cability of our framework in facilitating classical hardware
designs, we evaluate it on a C-based High-Level Synthesis
(HLS) benchmark comprising 7437 training samples and 1860
test samples. Each sample consists of a high-level design
description and a canonical HLS program. The HLS designs
include a wide range of domains, such as Matrix and Linear
Algebra Operations, Scientific Simulation, Statistical Compu-
tation, etc.

Quantum Hardware Benchmark To evaluate the effec-
tiveness of our approach in quantum hardware generation,
we adopt a Qiskit benchmark that includes 10896 training
samples and 50 test samples. Each training sample contains a
Qiskit program with human-written comments, while each test
sample consists of a functionality description and a canonical
Qiskit program.

IV. DECENTRALIZED TRAINING

A. Hierarchical Decentralized Training

Federated learning has demonstrated its potential for decen-
tralized training, with both cross-silo and cross-device settings
studied for various user scenarios. However, its practicality and
effectiveness might decrease when deploying it for clients with
poor or unreliable communication. This challenge becomes
even more pronounced in extra-large-scale collaborative train-
ing settings, where geometric and infrastructural restrictions
might affect deployment feasibility. Additionally, most feder-
ated learning approaches assume a shared network architecture
for locally trained models, which becomes impractical in the
context of LLM due to the high computational and memory
requirements for LLM training on client devices. To promote
the broader adoption of decentralized training for foundation
models in AI-assisted hardware design, this paper proposes a
hierarchical decentralized training scheme.

As illustrated in Fig. 2 and Algorithm 1, our hierarchical
decentralized training consists of two tiers. The first tier is
referred to as hybrid decentralized training. For clients or
organizations with reliable communication channels without
any restrictions, federated learning is employed for collabora-
tive training. Multiple groups will employ federated learning
within each group independently, resulting in several sepa-
rately trained federated models. Meanwhile, for parties with
isolated environments due to geographical or infrastructural
limitations, individual local training is performed. In the

second tier, different models with diverse domain knowledge,
learned via either federated or local training, are combined
together using model merging techniques. This hierarchical,
two-tier decentralized training framework enables efficient
utilization of private domain data regardless of physical or
regulatory restrictions.

Algorithm 1 Hierarchical Decentralized Training

1: Notation
2: C: Set of all clients
3: CF : Subset of clients with reliable communication, parti-

tioned into G groups CF
g , where g ∈ {1, 2, . . . , G}

4: CL: Subset of clients with no reliable communication
5: FL(·): Federated learning function
6: LT(·): Local training function
7: MM(·): Model merging function
8: Mglobal: Final global model after merging
9: Tier 1: Hybrid Decentralized Training

10: for each group CF
g in CF do

11: Train model MF
g = FL(CF

g) ▷ Federated Learning
12: end for
13: for each client CL

i in CL do
14: Train model ML

i = LT(CL
i) ▷ Local Training

15: end for
16: Tier 2: Model Merging
17: Gather: M = {MF

1 , . . . ,MF
G } ∪ {ML

i | CL
i ∈ CL}

18: Merge: Mglobal = MM(M)
19: Output: Global model Mglobal

B. Metric-based Aggregation

Adaptive approaches, such as client selection and quality-
aware model aggregation [37], have been studied in the context
of federated learning and model merging. However, prior
research has mainly focused on traditional AI tasks such as
classifications and segmentation, leaving their effectiveness in
the broader generative AI tasks unexplored. A key challenge in
applying adaptive model aggregation to generative tasks lies in
evaluating the quality of generated content. Although metrics
such as perplexity can be employed, these metrics require
reference answers and primarily measure similarity to these
references rather than the intrinsic quality of the generated
content. For instance, two programs with distinct coding styles
and variable naming might achieve the same functionality
and performance, yet exhibit vastly different perplexity scores.
Furthermore, although neural metrics like LLM-as-Judge have
been proposed, these methods often lack explainability and
analytical insights.

To address these challenges, this paper identifies a key
optimization opportunity in hardware design generation tasks.
Unlike traditional generative tasks, hardware generation in-
herently provides quantitative evaluation metrics—including
design syntax accuracy, hardware functional correctness, and
hardware latency—that can serve as robust criteria for model
aggregation and merging. Leveraging this observation, we
propose a flexible aggregation framework that enables users

to define custom metrics for weighting model contributions.
Formally, given the i-th client model Mi from a set of N
client models, the final aggregated model Mf is computed
as Mf =

∑N
i=1 g(Mi) · Mi, where g(·) is a user-defined

metric applied to client model to determine its contribution.
For instance, g(·) could be defined using syntax accuracy to
filter out model weights from clients trained on syntactically
incorrect data, thereby ensuring high-quality training data for
the aggregated model.

It is worth noting that our framework is not restricted
to using hardware-specific metrics such as syntax accuracy
and functional correctness. The specification is designed to
accommodate a wide variety of model aggregation strategies.
For example, if g(.) is parameterized as the ratio of client
training samples, the aggregation replicates the FedAvg algo-
rithm. By enabling customization of g(.), our framework caters
for diverse requirements across different hardware generation
tasks, allowing users to tailor aggregation strategies to their
specific needs.

V. PERSONALIZED INFERENCE-TIME OPTIMIZATIONS

A. Trueput: Efficiency Analysis for Design Generation

To analyze the efficiency of LLM-assisted design genera-
tion, we propose a new metric, Trueput, which quantifies the
number of functionally correct designs generated per unit of
time. It is defined as:

Trueput =
Pass@k
Tinf

(1)

where Pass@k represents the expected functionality pass rate
when k samples are generated, and Tinf denotes the expected
inference latency per output design.

Next, we analyze Trueput under the constraint of limited
computational resources. When batching is employed, the
inference latency Tinf is expressed as Tinf(k) since the batch
size depends on k. According to the Codex [6], an unbiased
estimate of Pass@k can be written as 1 − (1 − p)k with
functionality pass probability p. Substituting this into the
definition of Trueput, we obtain:

Trueputbatch =
1− (1− p)k

Tinf(k)
(2)

This formulation enables the analysis of efficiency of the
inference framework by accounting for both the accuracy of
the generated designs and the latency associated with batching
during inference. Increasing Trueputbatch requires decreasing
the inference time Tinf (·), and improving functionality pass
rate p. Given the form in (2), we hypothesize that a global
maximum of Trueputbatch exists at some finite value of k,
for fixed p and Tinf (·). Therefore, the value of k should
be optimized for each client to maximize Trueputbatch. To
address these goals, this paper explores personalized test-time
optimizations that target both speed enhancement to reduce
latency and quality improvement to increase pass rate.

B. Inference-Time Speed and Quality Enhancement

The scaling law of inference † has indicated its potential to
improve the performance for most natural language tasks. In
this work, we investigate their effectiveness in hardware design
generation and propose customization to further enhance their
flexibility and efficiency.

Customized Quality Improvement. Various test-time op-
timizations [41] can enhance output generation quality, with
popular methods including Best-of-N sampling and temper-
ature tuning. Since clients have diverse domains, such as
classical or quantum, and their focus on designing different
hardware architectures, the choice of optimization techniques
can vary across different scenarios to maximize the gener-
ation quality. Moreover, these techniques introduce multiple
hyperparameters, presenting a design space for optimization.
To leverage this opportunity, our framework enables clients to
customize and optimize their sampling strategy and hyperpa-
rameters to meet specific requirements, for example, allowing
them to balance hardware design quality and generation la-
tency by adjusting the sampling count. Table I presents the
sampling strategies supported in our framework with their
associated hyperparameters. To tailor the sampling strategy
for each client, a grid search can be applied to optimize the
sampling configurations.

TABLE I: Sampling Strategies and Hyperparameters

Strategy Description Hyperparameters
Nucleus

Sampling
Selects tokens with
cumulative probability p

p (cumulative probability)

Temperature
Sampling

Scales token probabilities
by temperature

Temperature, Number of
generated candidates

Top-k Sampling Chooses from the top k
most probable tokens

k (number of sequences
to consider)

Beam Search Expands search using a
fixed beam width Beam width

Personalized Inference-Time Acceleration. Generating an
optimized hardware design may require a large number of
samples, resulting in high generation latency and energy
costs. Since the performance of auto-regressive generation in
LLM inference is typically memory-bound, several techniques
have been introduced to leverage idle compute resources
to accelerate LLM inference. Among these are speculative
decoding [24], [34] and parallel decoding [3], [5], which
generates multiple tokens in parallel to improve the processing
speed. However, most existing approaches rely on a separate
training process to learn the multi-token generation capability.

In this work, we propose an inference-time learning ap-
proach, where each client locally learns acceleration param-
eters during the model’s deployment phase while serving
real user requests. Specifically, we observe that the learning
process of multi-token generation involves tuning the accel-
eration parameters to approximate the predictive distribution
of the original model. Therefore, rather than depending on a
training dataset, our approach utilizes the generation outputs

†https://openai.com/index/introducing-openai-o1-preview/

produced during deployment, while serving user requests,
for learning multi-token generation. This method offers two
key benefits. First, by leveraging user-generated content as
labels, the approach can be seen as an unsupervised learning
technique, eliminating the need for extra datasets. Second, the
learning process is performed during the model deployment
time, avoiding a separate training process to learn multi-token
generation. In this paper, we consider parallel decoding ap-
proaches as they are more training-efficient compared to other
speculative decoding methods, making it suitable for online
learning. The training objective is formulated as follows:

argmin
ϕ

Ex∼D
[
KL

(
Pa(yt+1:t+k | y1:t, x;ϕ), Po(yt+1:t+k | y1:t, x; θ)

)]
where ϕ are the acceleration parameters, and D is the

deployment data distribution. The KL-divergence measures
the difference between the Pa distribution for acceleration and
target Po distributions. yt+1:t+k represents the predicted token
sequence, and y1:t the previously generated tokens by target
model with parameter θ.

VI. EXPERIMENTS

A. Evaluation Setup

Models and Datasets For classical hardware experiments,
we use CodeLlama-7B [39] as the base model and the HLS
benchmark described in Sec. III-B. This benchmark contains
machine-generated instructions (MachineEval) produced by
GPT for HLS generation. To evaluate the model’s general-
izability, we involve human experts to manually refine 50
samples, creating a HumanEval version. For Qiskit quantum
design generation, we use StarCoder2-3B [30] with the dataset
introduced in Sec. III-B.

Federated Learning. For both classical and quantum
benchmarks, 40 clients are trained with datasets partitioned
using a Dirichlet distribution [23]. Each round involves train-
ing for one epoch with 10% of the clients participating. Two
aggregation metrics were tested: the number of data samples
(Ratio) and hardware syntax accuracy (Acc). A separate vali-
dation dataset was used to calculate syntax accuracy.

Model Merging. Hardware syntax accuracy on a validation
dataset was used as the weight for model aggregation for
both benchmarks. Client datasets were split using a Dirichlet
distribution. DARE [52] was used for hierarchical model ag-
gregation. In this setting, datasets were split in an IID manner
across FL clients and clients that perform local training.

Personalized Test-Time Optimization. We adopt parallel
decoding for inference-time acceleration. A validation dataset
with hardware design instructions is used to simulate user
requests. Different sampling strategies and the associated
hyperparameters are summarized in Table I.

B. Effect of Hierarchical Approach

To evaluate the effectiveness of our proposed hierarchical
approach, we conduct experiments on both classical and quan-
tum benchmarks, as shown in Fig. 3. We compare our method
against two baselines: the base model without fine-tuning and a

https://openai.com/index/introducing-openai-o1-preview/

w/o Finetune Model
Merging

Hierarchical
Merging

0

20

40

60

80

100
pa

ss
@

3
ac

cu
ra

cy
 (

%
)

52.15%

0.38%

42.31%40.38%

91.18%90.11%Syntax Accuracy
Semantic Accuracy

(a) HLS MachineEval.

w/o Finetune Model
Merging

Hierarchical
Merging

0

20

40

60

80

100

pa
ss

@
3

ac
cu

ra
cy

 (
%

)

12.0%
2.0%

58.0%
50.0%

92.0% 88.0%Syntax Accuracy
Semantic Accuracy

(b) HLS HumanEval.

w/o Finetune Model
Merging

Hierarchical
Merging

0

10

20

30

pa
ss

@
1

ac
cu

ra
cy

 (
%

)

18.0%
20.0%

22.0%

(c) Qiskit Benchmark.

Fig. 3: Effect of hierarchical approach on both classical and
quantum hardware benchmarks.

w/o Finetune FL Finetuned
Metric(Ratio)

FL Finetuned
Metric(Acc)

0

20

40

60

80

100

pa
ss

@
3

ac
cu

ra
cy

 (
%

)

52.15%

0.38%

71.77%
65.75% 70.22%

64.09%

Syntax Accuracy
Semantic Accuracy

(a) HLS MachineEval.

w/o Finetune FL Finetuned
Metric(Ratio)

FL Finetuned
Metric(Acc)

0

20

40

60

80

100

pa
ss

@
3

ac
cu

ra
cy

 (
%

)

12.0%
2.0%

68.0% 64.0% 64.0% 60.0%

Syntax Accuracy
Semantic Accuracy

(b) HLS HumanEval.

w/o Finetune FL Finetuned
Metric(Ratio)

FL Finetuned
Metric(Acc)

0

10

20

30

pa
ss

@
1

ac
cu

ra
cy

 (
%

)

18.0%

24.0%
26.0%

(c) Qiskit Benchmark.

Fig. 4: Evaluation of federated learning on both classical and
quantum hardware benchmarks.

model merging without hierarchical aggregation. For classical
hardware generated via HLS, we assess both syntax and
semantic accuracy with template generation enhancement. For
the quantum benchmark, we primarily focus on semantic ac-
curacy evaluation. In both classical and quantum evaluations,
our approach demonstrated accuracy improvement. As shown
in Fig. 3a&3b, the hierarchical approach demonstrates signif-
icantly greater improvement for classical hardware generation
tasks in both MachineEval and HumanEval, achieving nearly
an 80% increase in syntax and semantic accuracy compared
to the model without fine-tuning, and approximately 50% over
the model obtained through model merging. However, the
improvements in the Qiskit benchmark were less significant.
This could attributed to the higher difficulty of quantum design
generation, which can be further improved by incorporating
higher-quality training datasets.

C. Evaluation of Federated Learning

Fig. 4 present the evaluation of federated learning on classi-
cal and quantum benchmarks using two different aggregation
strategies. As shown in Fig. 4c, leveraging hardware syntax ac-
curacy during model aggregation achieves the best result in the
Qiskit Benchmark. For classical hardware generation as shown
in Fig. 4a&4b, Both ratio-based and Acc-based approaches
achieve similar results in MachineEval and HumanEval, with
up to a 60% increase in semantic accuracy. These findings
demonstrate the effectiveness and flexibility of federated learn-
ing with metric-based aggregation in training models for both
classical and quantum hardware design generation.

D. Personalized Inference-Time Optimizations

As discussed in Sec. I, the lack of personalized optimiza-
tions restricts the potential for maximizing both speed and
quality in model inference. Thus, we evaluate the impact of
two test-time optimizations: multi-token generation for accel-
eration and customized sampling for quality improvement. We
show that by tailoring multi-token generation configuration
and sampling strategies to the client’s compute budget, the
optimization achieves 2.3 × speedup ratio and upto 46%

60 75 90 105 120
Tree Size

2.5

2.6

2.7

2.8

2.9

Ac
ce

pt
an

ce
 R

at
io

Acceptance Ratio

1.9

2.0

2.1

2.2

2.3

2.4

Sp
ee

du
p

Ra
ti

o

Speedup Ratio

(a)

1 2 3 4 5
Sample Number

20

30

40

50

60

70

Sy
nt

ax
 A

cc
ur

ac
y

(%
)

Temperature Sampling
Combined Sampling
Top-k Sampling

Greedy Sampling
Top-p Sampling
Beam Search

(b)
Fig. 5: Personalized Test-Time Optimization. Left: multi-
token generation. Right: Customized sampling for HLS mod-
els. Combined Sampling uses both top-k and top-p filtering.

1 2 3 4 5 6 7 8 9 10
Sample Number

35

40

45

50

55

60

pa
ss

@
k

(%
)

Pass@k
Sampling Latency
(full GPU Capacity)
Sampling Latency
(20% GPU Capacity)

13
15
17
19
21
23
25
27
29
31

La
te

nc
y

(s
)

(a)

1 2 3 4 5 6 7 8 9 10
Sample Number

1.5

2.0

2.5

3.0

3.5

4.0

4.5

Tr
ue

pu
t

(d
es

ig
n/

s)

4.08

2.91

full GPU capacity
20% GPU capacity

(b)
Fig. 6: Trueput Evaluation. Left: Pass@k and latency for
different sample sizes. Right: Trueput across GPU capacities.

syntax accuracy improvement over default greedy decoding.
In Fig. 5a, we evaluate the speedup ratio with respect to
the tree size, a parameter reflecting the token parallelism.
While the acceptance ratio increases with larger tree sizes,
the speedup ratio peaks at a tree size of 60 due to limited
idle compute resources. This aligns with previous research
[5], which shows that tree size must be optimized per client
to achieve maximum speedup. In Fig. 5b, we examine how
different sampling strategies affect syntax accuracy. Beam
search performs best with sample sizes under 3, while com-
bined sampling outperforms others for larger sample sizes.
Our findings emphasize the need for personalized inference-
time optimizations to advance AI-assisted hardware design.

E. Effect of Sample Number on Trueput Optimization

In Sec. V, we introduce Trueput to analyze the efficiency
of design generation. To maximize Trueputbatch, in addition to
the previously mentioned personalized test-time optimization,
it is important to search for the optimal sample number k,
as shown in (2). As depicted in Fig. 6a, both Pass@k and
sampling latency increase with the sample number k, but
with different rates. Fig. 6b shows that a local maximum
of Trueputbatch exists, and the optimal value of k varies
depending on the GPU capacity. This observation highlights
that the sample number should be optimized per client to
achieve the maximum Trueput.

VII. CONCLUSION

Recent advancements in AI have shown great potential in
revolutionizing the traditional hardware design process. How-
ever, the limited quality and quantity of available data remain
critical barriers to the development of AI-assisted hardware
design. In this paper, the authors argue that addressing this

fundamental challenge requires decentralized and personalized
learning approaches. To this end, we present a two-stage
framework featuring a novel hierarchical decentralized training
paradigm with metric-based model aggregation for model
training, along with personalized inference-time optimizations
to enhance deployment efficiency. Comprehensive evaluations
on both classical and quantum hardware design tasks demon-
strate the effectiveness of our approach. We hope that the
benchmarking results of this work will encourage broader
engagement from both industrial and individual parties in
jointly advancing AI-assisted hardware design.

REFERENCES

[1] Mehdi Salehi Heydar Abad et al. Hierarchical federated learning
across heterogeneous cellular networks. In ICASSP 2020-2020 IEEE
International Conference on Acoustics, Speech and Signal Processing
(ICASSP), pages 8866–8870. IEEE, 2020.

[2] Alon Albalak et al. A survey on data selection for language models.
arXiv preprint arXiv:2402.16827, 2024.

[3] Tianle Cai et al. Medusa: Simple LLM Inference Acceleration Frame-
work with Multiple Decoding Heads. arXiv preprint arXiv:2401.10774,
2024.

[4] Kaiyan Chang et al. Chipgpt: How far are we from natural language
hardware design. arXiv preprint arXiv:2305.14019, 2023.

[5] Hao Mark Chen et al. Hardware-aware parallel prompt decoding
for memory-efficient acceleration of llm inference. arXiv preprint
arXiv:2405.18628, 2024.

[6] Mark Chen et al. Evaluating large language models trained on code.
arXiv preprint arXiv:2107.03374, 2021.

[7] Nicolas Dupuis et al. Qiskit code assistant: Training llms for generating
quantum computing code. arXiv preprint arXiv:2405.19495, 2024.

[8] Yanai Elazar et al. What’s in my big data? In The Twelfth International
Conference on Learning Representations, 2024.

[9] Weimin Fu et al. Llm4sechw: Leveraging domain-specific large language
model for hardware debugging. In 2023 Asian Hardware Oriented
Security and Trust Symposium (AsianHOST), pages 1–6. IEEE, 2023.

[10] Wentao Gao et al. Federated learning as a service for hierarchical edge
networks with heterogeneous models. arXiv preprint arXiv:2407.20573,
2024.

[11] Charles Goddard et al. Arcee’s mergekit: A toolkit for merging large
language models. arXiv preprint arXiv:2403.13257, 2024.

[12] István Hegedűs et al. Gossip learning as a decentralized alternative
to federated learning. In Distributed Applications and Interoperable
Systems: 19th IFIP WG 6.1 International Conference, DAIS 2019, Held
as Part of the 14th International Federated Conference on Distributed
Computing Techniques, DisCoTec 2019, Kongens Lyngby, Denmark,
June 17–21, 2019, Proceedings 19, pages 74–90. Springer, 2019.

[13] Timothy Hospedales et al. Meta-learning in neural networks: A sur-
vey. IEEE transactions on pattern analysis and machine intelligence,
44(9):5149–5169, 2021.

[14] Nathaniel Hudson et al. Flight: A faas-based framework for complex
and hierarchical federated learning. arXiv preprint arXiv:2409.16495,
2024.

[15] Gabriel Ilharco et al. Editing models with task arithmetic. arXiv preprint
arXiv:2212.04089, 2022.

[16] Juyong Jiang et al. A survey on large language models for code
generation. arXiv preprint arXiv:2406.00515, 2024.

[17] Haolin Jin et al. From llms to llm-based agents for software engi-
neering: A survey of current, challenges and future. arXiv preprint
arXiv:2408.02479, 2024.

[18] Peter Kairouz et al. Advances and open problems in federated learning.
Foundations and trends® in machine learning, 14(1–2):1–210, 2021.

[19] Jakub Konečnỳ et al. Federated optimization: Distributed machine
learning for on-device intelligence. arXiv preprint arXiv:1610.02527,
2016.

[20] Viraj Kulkarni et al. Survey of personalization techniques for federated
learning. In 2020 fourth world conference on smart trends in systems,
security and sustainability (WorldS4), pages 794–797. IEEE, 2020.

[21] Yongchan Kwon et al. Datainf: Efficiently estimating data influence in
loRA-tuned LLMs and diffusion models. In The Twelfth International
Conference on Learning Representations, 2024.

[22] Royson Lee et al. Fedl2p: Federated learning to personalize. Advances
in Neural Information Processing Systems, 36, 2024.

[23] Qinbin Li et al. Federated learning on non-iid data silos: An exper-
imental study. In 2022 IEEE 38th international conference on data
engineering (ICDE), pages 965–978. IEEE, 2022.

[24] Yuhui Li et al. EAGLE: Speculative Sampling Requires Rethinking
Feature Uncertainty. arXiv preprint arXiv:2401.15077, 2024.

[25] Paul Pu Liang et al. Think locally, act globally: Federated learning
with local and global representations. arXiv preprint arXiv:2001.01523,
2020.

[26] Yuchao Liao et al. Are llms any good for high-level synthesis? arXiv
preprint arXiv:2408.10428, 2024.

[27] Hunter Lightman et al. Let’s verify step by step. arXiv preprint
arXiv:2305.20050, 2023.

[28] Mingjie Liu et al. Verilogeval: Evaluating large language models for
verilog code generation. In 2023 IEEE/ACM International Conference
on Computer Aided Design (ICCAD), pages 1–8. IEEE, 2023.

[29] Shang Liu et al. Rtlcoder: Outperforming gpt-3.5 in design rtl generation
with our open-source dataset and lightweight solution. In 2024 IEEE
LLM Aided Design Workshop (LAD), pages 1–5. IEEE, 2024.

[30] Anton Lozhkov et al. Starcoder 2 and the stack v2: The next generation,
2024.

[31] Yao Lu et al. Rtllm: An open-source benchmark for design rtl generation
with large language model. In 2024 29th Asia and South Pacific Design
Automation Conference (ASP-DAC), pages 722–727. IEEE, 2024.

[32] Michael S Matena et al. Merging models with fisher-weighted averaging.
Advances in Neural Information Processing Systems, 35:17703–17716,
2022.

[33] Brendan McMahan et al. Communication-efficient learning of deep
networks from decentralized data. In Artificial intelligence and statistics,
pages 1273–1282. PMLR, 2017.

[34] Xupeng Miao et al. SpecInfer: Accelerating Large Language Model
Serving with Tree-based Speculative Inference and Verification. In ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2024.

[35] Mohammed Muqeeth et al. Soft merging of experts with adaptive
routing. arXiv preprint arXiv:2306.03745, 2023.

[36] Dinh C Nguyen et al. Federated learning for internet of things: A
comprehensive survey. IEEE Communications Surveys & Tutorials,
23(3):1622–1658, 2021.

[37] Pian Qi et al. Model aggregation techniques in federated learning: A
comprehensive survey. Future Generation Computer Systems, 150:272–
293, 2024.

[38] Yuxiao Qu et al. Recursive introspection: Teaching language model
agents how to self-improve. arXiv preprint arXiv:2407.18219, 2024.

[39] Baptiste Roziere et al. Code llama: Open foundation models for code.
arXiv preprint arXiv:2308.12950, 2023.

[40] Reza Shokri et al. Privacy-preserving deep learning. In Proceedings of
the 22nd ACM SIGSAC conference on computer and communications
security, pages 1310–1321, 2015.

[41] Charlie Snell et al. Scaling llm test-time compute optimally can
be more effective than scaling model parameters. arXiv preprint
arXiv:2408.03314, 2024.

[42] Canh T Dinh et al. Personalized federated learning with moreau en-
velopes. Advances in neural information processing systems, 33:21394–
21405, 2020.

[43] Shailja Thakur et al. Verigen: A large language model for verilog code
generation. ACM Transactions on Design Automation of Electronic
Systems, 29(3):1–31, 2024.

[44] Yun-Da Tsai et al. Rtlfixer: Automatically fixing rtl syntax errors with
large language models. arXiv preprint arXiv:2311.16543, 2023.

[45] Peiyi Wang et al. Math-shepherd: Verify and reinforce llms step-by-
step without human annotations. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers), pages 9426–9439, 2024.

[46] T Wolf. Huggingface’s transformers: State-of-the-art natural language
processing. arXiv preprint arXiv:1910.03771, 2019.

[47] Chenwei Xiong et al. Hlspilot: Llm-based high-level synthesis. arXiv
preprint arXiv:2408.06810, 2024.

[48] Haocheng Xu et al. Optimizing high-level synthesis designs with
retrieval-augmented large language models. In 2024 IEEE LLM Aided
Design Workshop (LAD), pages 1–5. IEEE, 2024.

[49] Zhiyuan Yan et al. Assertllm: Generating and evaluating hardware
verification assertions from design specifications via multi-llms. arXiv
preprint arXiv:2402.00386, 2024.

[50] Enneng Yang et al. Model merging in llms, mllms, and beyond:
Methods, theories, applications and opportunities. arXiv preprint
arXiv:2408.07666, 2024.

[51] Mang Ye et al. Heterogeneous federated learning: State-of-the-art and
research challenges. ACM Computing Surveys, 56(3):1–44, 2023.

[52] Le Yu et al. Language models are super mario: Absorbing abilities
from homologous models as a free lunch. In Forty-first International
Conference on Machine Learning, 2024.

[53] Frederic Z Zhang et al. Knowledge composition using task vectors with
learned anisotropic scaling. arXiv preprint arXiv:2407.02880, 2024.

	Introduction
	Background and Related Work
	Decentralized Training
	Federated Learning
	Model Merging

	Optimization of LLM Inference
	Speculative Decoding & Parallel Decoding
	Inference-Time Scaling Strategy

	Related Work

	Framework Overview and Benchmarks
	Framework Overview
	Benchmarks

	Decentralized Training
	Hierarchical Decentralized Training
	Metric-based Aggregation

	Personalized Inference-Time Optimizations
	Trueput: Efficiency Analysis for Design Generation
	Inference-Time Speed and Quality Enhancement

	Experiments
	Evaluation Setup
	Effect of Hierarchical Approach
	Evaluation of Federated Learning
	Personalized Inference-Time Optimizations
	Effect of Sample Number on Trueput Optimization

	Conclusion
	References

